Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Adenosine infusion increases plasma levels of VEGF in humans 
BMC Physiology  2005;5:10.
Many in vitro studies have shown that adenosine (Ado) can induce vascular endothelial growth factor (VEGF) mRNA and protein expression and stimulate endothelial proliferation. In the present study, we seek to determine whether Ado can increase circulating levels of VEGF protein in the intact human.
Five outpatients 49.3 ± 6.7 years of age and weighing 88.2 ± 8.5 kg were selected. They were given a 6 min intravenous infusion of Ado (0.14 mg kg-1 min-1) in conjunction with sestamibi myocardial perfusion scans. Mean blood pressure (MBP, calculated from systolic and diastolic values) and heart rate (HR) were determined before Ado infusion and every 2 min for the next 10 min. Plasma VEGF concentrations (ELISA) were determined immediately before Ado infusion and 1 h, 2 h, and 8 h after the infusion.
Plasma VEGF concentration averaged 20.3 ± 2.0 pg ml-1 prior to Ado infusion, and increased to 62.7 ± 18.1 pg ml-1 at 1 h post- infusion (p < 0.01). VEGF plasma concentration returned to basal levels 2 h after infusion (23.3 ± 3.4 pg ml-1). MBP averaged 116 ± 7 mmHg and heart rate averaged 70 ± 7 prior to Ado infusion. MBP decreased by a maximum of ~22% and HR increased by a maximum of ~17% during the infusion.
We conclude from these preliminary findings that intravenous infusion of adenosine can increase plasma levels of VEGF in humans.
PMCID: PMC1183224  PMID: 15967042
2.  Exercise increases endostatin in circulation of healthy volunteers 
BMC Physiology  2004;4:2.
Physical inactivity increases the risk of atherosclerosis. However, the molecular mechanisms of this relation are poorly understood. A recent report indicates that endostatin, an endogenous angiostatic factor, inhibits the progression of atherosclerosis, and suggests that reducing intimal and atherosclerotic plaque tissue neovascularization can inhibit the progression atherosclerosis in animal models. We hypothesize that exercise can elevate the circulatory endostatin level. Hence, exercise can protect against one of the mechanisms of atherosclerosis.
We examined treadmill exercise tests in healthy volunteers to determine the effect of exercise on plasma levels of endostatin and other angiogenic regulators. Oxygen consumption (VO2) was calculated. Plasma levels of endostatin, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) were determined using ELISA. The total peak VO2 (L) in 7 male subjects was 29.5 ± 17.8 over a 4–10 minute interval of exercise. Basal plasma levels of endostatin (immediately before exercise) were 20.3 ± 3.2 pg/ml, the plasma levels increased to 29.3 ± 4.2, 35.2 ± 1.8, and 27.1 ± 2.2 ng/ml, at 0.5, 2, and 6 h, respectively, after exercise. There was a strong linear correlation between increased plasma levels of endostatin (%) and the total peak VO2 (L) related to exercise (R2 = 0.9388; P < 0.01). Concurrently, VEGF levels decreased to 28.3 ± 6.4, 17.6 ± 2.4, and 26.5 ± 12.5 pg/ml, at 0.5, 2, and 6 h, respectively, after exercise. There were no significant changes in plasma bFGF levels in those subjects before and after exercise.
The results suggest that circulating endostatin can be significantly increased by exercise in proportion to the peak oxygen consumption under physiological conditions in healthy volunteers. These findings may provide new insights into the molecular links between physical inactivity and the risk of angiogenesis dependent diseases such as atherosclerosis.
PMCID: PMC324413  PMID: 14728720

Results 1-2 (2)