PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  The presence of β2-adrenoceptors sensitizes α2A-adrenoceptors to desensitization after chronic epinephrine treatment 
BMC Pharmacology  2007;7:16.
Background
In addition to the regulation of blood pressure, α2- and β-adrenoceptor (AR) subtypes play an important role in the modulation of noradrenergic neurotransmission in the human CNS and PNS. Several studies suggest that the α2-AR responsiveness in cells and tissues after chronic epinephrine (EPI) or norepinephrine (NE) exposure may vary, depending on the β-AR activity present there. Recently, we reported that in BE(2)-C human neuroblastoma cells (endogenously expressing α2A- and β2-AR), chronic EPI treatment (300 nM) produced a dramatic β-adrenoceptor-dependent desensitization of the α2A-AR response. The aim of this study is to determine if stable addition of a β2-AR to a second neuroblastoma cell line (SH-SY5Y), that normally expresses only α2A-ARs that are not sensitive to 300 nM EPI exposure, would suddenly render α2A-ARs in that cell line sensitive to treatment with the same EPI concentration.
Methods
These studies employed RT-PCR, receptor binding and inhibition of cAMP accumulation to confirm α2-AR subtype expression. Stable clones of SH-SY5Y cells transfected to stably express functional β2-ARs (SHβ2AR4) were selected to compare sensitivity of α2-AR to EPI in the presence or absence of β2-ARs.
Results
A series of molecular, biochemical and pharmacological studies indicated that the difference between the cell lines could not be attributed to α2-AR heterogeneity. We now report that after transfection of functional β2-AR into SH-SY5Y cells (SHβ2AR4), chronic treatment with modest levels of EPI desensitizes the α2A-AR. This effect results from a β2-AR dependent down-regulation of native α2A-ARs by EPI accompanied by enhanced translocation of GRK2 and GRK3 to the membrane (required for GRK-mediated phosphorylation of agonist-occupied receptors).
Conclusion
This study further supports the hypothesis that the presence of the β-AR renders the α2A-AR more susceptible to desensitization with physiological levels of EPI.
doi:10.1186/1471-2210-7-16
PMCID: PMC2234403  PMID: 18096057
2.  Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts 
BMC Pharmacology  2007;7:15.
Background
Photodynamic therapy (PDT) is an effective local cancer treatment that involves light activation of a photosensitizer, resulting in oxygen-dependent, free radical-mediated cell death. Little is known about the comparative efficacy of PDT in treating non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), despite ongoing clinical trials treating lung cancers. The present study evaluated the potential use of chlorin e6 – polyvinylpyrrolidone (Ce6-PVP) as a multimodality photosensitizer for fluorescence detection and photodynamic therapy (PDT) on NSCLC and SCLC xenografts.
Results
Human NSCLC (NCI-H460) and SCLC (NCI-H526) tumor cell lines were used to establish tumor xenografts in the chick chorioallantoic membrane (CAM) model as well as in the Balb/c nude mice. In the CAM model, Ce6-PVP was applied topically (1.0 mg/kg) and fluorescence intensity was charted at various time points. Tumor-bearing mice were given intravenous administration of Ce6-PVP (2.0 mg/kg) and laser irradiation at 665 nm (fluence of 150 J/cm2 and fluence rate of 125 mW/cm2). Tumor response was evaluated at 48 h post PDT. Studies of temporal fluorescence pharmacokinetics in CAM tumor xenografts showed that Ce6-PVP has a selective localization and a good accuracy in demarcating NSCLC compared to SCLC from normal surrounding CAM after 3 h post drug administration. Irradiation at 3 h drug-light interval showed greater tumor necrosis against human NSCLC xenografts in nude mice. SCLC xenografts were observed to express resistance to photosensitization with Ce6-PVP.
Conclusion
The formulation of Ce6-PVP is distinctly advantageous as a diagnostic and therapeutic agent for fluorescence diagnosis and PDT of NSCLC.
doi:10.1186/1471-2210-7-15
PMCID: PMC2212622  PMID: 18053148
3.  Tuberous sclerosis preclinical studies: timing of treatment, combination of a rapamycin analog (CCI-779) and interferon-gamma, and comparison of rapamycin to CCI-779 
BMC Pharmacology  2007;7:14.
Background
Tuberous Sclerosis Complex (TSC) is an autosomal dominant hamartoma disorder with variable expression for which treatment options are limited. TSC is caused by a mutation in either the TSC1 or TSC2 genes, whose products, hamartin and tuberin, function as negative regulators in the highly-conserved mammalian target of rapamycin (mTOR) signaling pathway. Rapamycin (also known as sirolimus), an mTOR inhibitor, has been shown to reduce disease severity in rodent models of TSC and is currently being evaluated in clinical trials in human populations. The cytokine interferon-gamma (IFN-γ) is also a potential therapeutic agent for TSC. A high-expressing IFN-γ allele has been associated with reduced disease severity in human TSC patients and it has been shown in mouse models that treatment with exogenous IFN-γ reduces disease severity.
Results
Here, we examine the effects of treating Tsc2+/- mice at different time points with a rapamycin analog (CCI-779) as a single agent or with a combination of CCI-779 and IFN-γ. We observed that administering a short course of CCI-779 or CCI-779 plus IFN-γ reduced the severity of kidney lesions if administered after such lesions develop. As long as treatment is given after lesions arise, altering the time period during which treatment was given did not significantly impact the effect of the treatment on disease severity. We did not observe a significant benefit of combination therapy relative to treatment with a rapamycin analog alone in Tsc2+/- mice. We also compared timing of treatment and two mTOR inhibitors (rapamycin and CCI-779) in nude mice bearing Tsc2-/- tumors.
Conclusion
Preventing the genesis of TSC-related kidney lesions in Tsc2+/- mice is not an effective treatment strategy; rather, the presence of growing tumors appears to be the most important factor when determining an appropriate treatment schedule. Treatment with rapamycin was more effective in reducing tumor growth and improving survival in nude mice bearing Tsc2-/- tumors and also resulted in higher rapamycin levels in blood, brain, and kidney tissue than treatment with an equal milligram dose of CCI-779. We anticipate these results will influence future preclinical and clinical trials for TSC.
doi:10.1186/1471-2210-7-14
PMCID: PMC2213639  PMID: 17986349
4.  Impact of imatinib on the pharmacokinetics and in vivo efficacy of etoposide and/or ifosfamide 
BMC Pharmacology  2007;7:13.
Background
Using a human small cell lung cancer (SCLC) xenografted in nude mice, we have previously reported enhanced tumor growth inhibition following chemotherapy in combination with imatinib (STI571). We therefore investigated the in vivo impact of imatinib on the pharmacokinetics and efficacy of chemotherapy.
Methods
Two different human tumors were used: SCLC6 small cell lung cancer xenografted in nude mice, and LY-3 EBV-associated human B-cell lymphoma xenografted in SCID mice. Plasma, urine, and fecal concentrations of etoposide (VP16) were determined by a validated high performance liquid chromatography method. Plasma concentrations of ifosfamidewere determined by a validated gas chromatography assay with nitrogen-phosphorus detection.
Results
Slight tumor growth inhibition was induced by imatinib administered alone in one in vivo EBV-associated B-cell lymphomatous xenograft. In contrast, an increase of the chemotherapy-induced antitumor effect was observed in the lymphoma model but not in a small cell lung cancer model when mice bearing human xenografted tumors were treated concomitantly by imatinib and chemotherapy. This antitumor effect was not influenced by concomitant administration of fluconazole. The AUC0-3 h (Area Under the concentration-time Curve) of etoposide was increased when mice were treated with etoposide + imatinib due to decreased fecal excretion. In contrast, imatinib did not appear to influence the urinary excretion of etoposide, and concomitant administration of the CYP3A4 inhibitor, fluconazole, with imatinib did not modify the pharmacokinetics of etoposide plus imatinib alone.
Conclusion
Altogether, these results therefore justify further prospective phase I and II clinical trials with combinations of etoposide-based chemotherapy and imatinib in patients with certain cancers, such as malignant lymphoma, with careful toxicologic monitoring.
doi:10.1186/1471-2210-7-13
PMCID: PMC2180168  PMID: 17963518
5.  Ciclesonide uptake and metabolism in human alveolar type II epithelial cells (A549) 
BMC Pharmacology  2007;7:12.
Background
Ciclesonide is a novel inhaled corticosteroid for the treatment of airway inflammation. In this study we investigated uptake and in vitro metabolism of ciclesonide in human alveolar type II epithelial cells (A549). Ciclesonide uptake was compared with fluticasone propionate, an inhaled corticosteroid that is not metabolized in lung tissue. A549 cells were incubated with 2 × 10-8 M ciclesonide or fluticasone propionate for 3 to 30 min to determine uptake; or with 2 × 10-8 M ciclesonide for 1 h, followed by incubation with drug-free buffer for 3, 6, and 24 h to analyze in vitro metabolism. High performance liquid chromatography with tandem mass spectrometry was used to measure the concentrations of both corticosteroids and metabolites.
Results
At all time points the mean intracellular concentration was higher for ciclesonide when compared with fluticasone propionate. Activation of ciclesonide to desisobutyryl-ciclesonide (des-CIC) was confirmed and conjugates of des-CIC with fatty acids were detected. The intracellular concentration of ciclesonide decreased over time, whereas the concentration of des-CIC remained relatively stable: 2.27 to 3.19 pmol/dish between 3 and 24 h. The concentration of des-CIC fatty acid conjugates increased over time, with des-CIC-oleate being the main metabolite.
Conclusion
Uptake of ciclesonide into A549 cells was more efficient than that of the less lipophilic fluticasone propionate. Intracellular concentrations of the pharmacologically active metabolite des-CIC were maintained for up to 24 h. The local anti-inflammatory activity of ciclesonide in the lung may be prolonged by the slow release of active drug from the depot of fatty acid esters.
doi:10.1186/1471-2210-7-12
PMCID: PMC2048954  PMID: 17900334
6.  Gene expression profiling reveals effects of Cimicifuga racemosa (L.) NUTT. (black cohosh) on the estrogen receptor positive human breast cancer cell line MCF-7 
BMC Pharmacology  2007;7:11.
Background
Extracts from the rhizome of Cimicifuga racemosa (black cohosh) are increasingly popular as herbal alternative to hormone replacement therapy (HRT) for the alleviation of postmenopausal disorders. However, the molecular mode of action and the active principles are presently not clear. Previously published data have been largely contradictory. We, therefore, investigated the effects of a lipophilic black cohosh rhizome extract and cycloartane-type triterpenoids on the estrogen receptor positive human breast cancer cell line MCF-7.
Results
Both extract and purified compounds clearly inhibited cellular proliferation. Gene expression profiling with the extract allowed us to identify 431 regulated genes with high significance. The extract induced expression pattern differed from those of 17β-estradiol or the estrogen receptor antagonist tamoxifen. We observed a significant enrichment of genes in an anti-proliferative and apoptosis-sensitizing manner, as well as an increase of mRNAs coding for gene products involved in several stress response pathways. These functional groups were highly overrepresented among all regulated genes. Also several transcripts coding for oxidoreductases were induced, as for example the cytochrome P450 family members 1A1 and 1B1. In addition, some transcripts associated with antitumor but also tumor-promoting activity were regulated. Real-Time RT-PCR analysis of 13 selected genes was conducted after treatment with purified compounds – the cycloartane-type triterpene glycoside actein and triterpene aglycons – showing similar expression levels compared to the extract.
Conclusion
No estrogenic but antiproliferative and proapoptotic gene expression was shown for black cohosh in MCF-7 cells at the transcriptional level. The effects may be results of the activation of different pathways. The cycloartane glycosides and – for the first time – their aglycons could be identified as an active principle in black cohosh.
doi:10.1186/1471-2210-7-11
PMCID: PMC2194763  PMID: 17880733
7.  An integrative in silico approach for discovering candidates for drug-targetable protein-protein interactions in interactome data 
BMC Pharmacology  2007;7:10.
Background
Protein-protein interactions (PPIs) are challenging but attractive targets for small chemical drugs. Whole PPIs, called the 'interactome', have been emerged in several organisms, including human, based on the recent development of high-throughput screening (HTS) technologies. Individual PPIs have been targeted by small drug-like chemicals (SDCs), however, interactome data have not been fully utilized for exploring drug targets due to the lack of comprehensive methodology for utilizing these data. Here we propose an integrative in silico approach for discovering candidates for drug-targetable PPIs in interactome data.
Results
Our novel in silico screening system comprises three independent assessment procedures: i) detection of protein domains responsible for PPIs, ii) finding SDC-binding pockets on protein surfaces, and iii) evaluating similarities in the assignment of Gene Ontology (GO) terms between specific partner proteins. We discovered six candidates for drug-targetable PPIs by applying our in silico approach to original human PPI data composed of 770 binary interactions produced by our HTS yeast two-hybrid (HTS-Y2H) assays. Among them, we further examined two candidates, RXRA/NRIP1 and CDK2/CDKN1A, with respect to their biological roles, PPI network around each candidate, and tertiary structures of the interacting domains.
Conclusion
An integrative in silico approach for discovering candidates for drug-targetable PPIs was applied to original human PPIs data. The system excludes false positive interactions and selects reliable PPIs as drug targets. Its effectiveness was demonstrated by the discovery of the six promising candidate target PPIs. Inhibition or stabilization of the two interactions may have potential therapeutic effects against human diseases.
doi:10.1186/1471-2210-7-10
PMCID: PMC2045083  PMID: 17705877
8.  Sodium valproate stimulates potassium and chloride urinary excretion in rats: gender differences 
BMC Pharmacology  2007;7:9.
Background
The diuretic effect of valproates and its relation to urinary potassium (K+) and chloride (Cl-) excretion have not yet been investigated, so the aim of this study was to evaluate the influence of a single dose of sodium valproate (NaVPA) on 24-h urinary K+ and Cl- excretion in young adult Wistar rats of both genders. For measurement of K+ in urine, the same animals and samples as in our earlier publication were used (Pharmacology 2005 Nov, 75:111–115). The authors propose a new approach to the pathophysiological mechanisms of NaVPA effect on K+ and Cl- metabolism.
Twenty six Wistar rats were examined after a single intragastric administration of 300 mg/kg NaVPA (13 NaVPA-male and 13 NaVPA-female), 28 control intact Wistar rats (14 males and 14 females) were studied as a control group. The 24-h urinary K+, Cl-, creatinine and pH levels were measured.
Results
Total 24-h diuresis and 24-h diuresis per 100 g of body weight were found to be significantly higher in NaVPA-rats of both genders than in rats of the control group (p < 0.05). The data showed NaVPA to enhance 24-h K+ excretion in NaVPA-males and NaVPA-females with significant gender-related differences: 24-h K+ excretion in NaVPA-male rats was significantly higher than in control males (p = 0.003) and NaVPA-female rats (p < 0.001). Regarding the 24-h K+ excretion, NaVPA-female rats did not show a statistically significant difference versus females of the control group (p > 0.05). 24-h urinary K+ excretion per 100 g of body weight in NaVPA-male rats was significantly higher than in control males (p = 0.025). NaVPA enhanced Cl- urinary excretion: 24-h Cl- urinary excretion, 24-h urinary Cl- excretion per 100 g of body weight and the Cl-/creatinine ratio were significantly higher in NaVPA-male and NaVPA-female rats than in gender-matched controls (p < 0.05). 24-h chloriduretic response to NaVPA in male rats was significantly higher than in female rats (p < 0.05).
Conclusion
NaVPA causes kaliuretic and chloriduretic effects with gender-related differences in rats. Further investigations are necessary to elucidate the mechanism of such pharmacological effects of NaVPA.
doi:10.1186/1471-2210-7-9
PMCID: PMC1959196  PMID: 17683602
9.  Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO 
BMC Pharmacology  2007;7:8.
Background
The rational design of peptide-based specific inhibitors of the caspase family members using their X-ray crystallographies is an important strategy for chemical knockdown to define the critical role of each enzyme in apoptosis and inflammation. Recently, we designed a novel potent peptide inhibitor, Ac-DNLD-CHO, for caspase-3 using a new computational screening system named the Amino acid Positional Fitness (APF) method (BMC Pharmacol. 2004, 4:7). Here, we report the specificity of the DNLD sequence against caspase-3 over other major caspase family members that participate in apoptosis by computational docking and site-directed mutagenesis studies.
Results
Ac-DNLD-CHO inhibits caspases-3, -7, -8, and -9 activities with Kiapp values of 0.68, 55.7, >200, and >200 nM, respectively. In contrast, a well-known caspase-3 inhibitor, Ac-DEVD-CHO, inhibits all these caspases with similar Kiapp values. The selective recognition of a DNLD sequence by caspase-3 was confirmed by substrate preference studies using fluorometric methylcoumarin-amide (MCA)-fused peptide substrates. The bases for its selectivity and potency were assessed on a notable interaction between the substrate Asn (N) and the caspase-3 residue Ser209 in the S3 subsite and the tight interaction between the substrate Leu (L) and the caspase-3 hydrophobic S2 subsite, respectively, in computational docking studies. Expectedly, the substitution of Ser209 with alanine resulted in loss of the cleavage activity on Ac-DNLD-MCA and had virtually no effect on cleaving Ac-DEVD-MCA. These findings suggest that N and L residues in Ac-DNLD-CHO are the determinants for the selective and potent inhibitory activity against caspase-3.
Conclusion
On the basis of our results, we conclude that Ac-DNLD-CHO is a reliable, potent and selective inhibitor of caspase-3. The specific inhibitory effect on caspase-3 suggests that this inhibitor could become an important tool for investigations of the biological function of caspase-3. Furthermore, Ac-DNLD-CHO may be an attractive lead compound to generate novel effective non-peptidic pharmaceuticals for caspase-mediated apoptosis diseases, such as neurodegenerative disorders and viral infection diseases.
doi:10.1186/1471-2210-7-8
PMCID: PMC1931592  PMID: 17594508
10.  Uptake and metabolism of ciclesonide and retention of desisobutyryl-ciclesonide for up to 24 hours in rabbit nasal mucosa 
BMC Pharmacology  2007;7:7.
Background
The nasal tissue uptake and metabolism of ciclesonide, a new-generation corticosteroid under investigation for treatment of allergic rhinitis, to its active metabolite, desisobutyryl-ciclesonide (des-CIC), was evaluated when administered to rabbits in a hypotonic versus an isotonic ciclesonide suspension. Nasal mucosa extracts from normal Japanese white rabbits were evaluated by high-performance liquid chromatography with tandem mass spectrometry detection after a single 143-μg dose of ciclesonide. Retention and formation of fatty acid conjugates of des-CIC were also measured in nasal mucosa extracts postadministration of a hypotonic ciclesonide suspension (143-μg single dose).
Results
Versus an isotonic suspension, the hypotonic suspension achieved higher concentrations of des-CIC (5.6-fold, 11.4-fold, and 13.4-fold; p < 0.05 for all) and ciclesonide (25.3-fold, 34.2-fold [p = not significant], and 16-fold [p < 0.05]) at 30, 120, and 240 min postadministration. Additionally, when administered via a hypotonic suspension, des-CIC was retained up to 24 h postadministration (45.46 pmol/g tissue). Highest concentration of major fatty acid ester conjugate, des-CIC-oleate, was detected in nasal mucosa at 8 h postadministration.
Conclusion
These data suggest that a hypotonic ciclesonide suspension provides higher intracellular concentrations of des-CIC up to 24 h, thereby providing a rationale for investigation of ciclesonide as a convenient once-daily nasal spray for treatment of allergic rhinitis.
doi:10.1186/1471-2210-7-7
PMCID: PMC1906851  PMID: 17553148
11.  Clofibrate treatment in pigs: Effects on parameters critical with respect to peroxisome proliferator-induced hepatocarcinogenesis in rodents 
BMC Pharmacology  2007;7:6.
Background
In rodents treatment with fibrates causes hepatocarcinogenesis, probably as a result of oxidative stress and an impaired balance between apoptosis and cell proliferation in the liver. There is some debate whether fibrates could also induce liver cancer in species not responsive to peroxisome proliferation. In this study the effect of clofibrate treatment on peroxisome proliferation, production of oxidative stress, gene expression of pro- and anti-apoptotic genes and proto-oncogenes was investigated in the liver of pigs, a non-proliferating species.
Results
Pigs treated with clofibrate had heavier livers (+16%), higher peroxisome counts (+61%), higher mRNA concentration of acyl-CoA oxidase (+66%), a higher activity of catalase (+41%) but lower concentrations of hydrogen peroxide (-32%) in the liver than control pigs (P < 0.05); concentrations of lipid peroxidation products (thiobarbituric acid-reactive substances, conjugated dienes) and total and reduced glutathione in the liver did not differ between both groups. Clofibrate treated pigs also had higher hepatic mRNA concentrations of bax and the proto-oncogenes c-myc and c-jun and a lower mRNA concentration of bcl-XL than control pigs (P < 0.05).
Conclusion
The data of this study show that clofibrate treatment induces moderate peroxisome proliferation but does not cause oxidative stress in the liver of pigs. Gene expression analysis indicates that clofibrate treatment did not inhibit but rather stimulated apoptosis in the liver of these animals. It is also shown that clofibrate increases the expression of the proto-oncogenes c-myc and c-jun in the liver, an event which could be critical with respect to carcinogenesis. As the extent of peroxisome proliferation by clofibrate was similar to that observed in humans, the pig can be regarded as a useful model for investigating the effects of peroxisome proliferators on liver function and hepatocarcinogenesis.
doi:10.1186/1471-2210-7-6
PMCID: PMC1858689  PMID: 17437637
12.  The enantiomers of tramadol and its major metabolite inhibit peristalsis in the guinea pig small intestine via differential mechanisms 
BMC Pharmacology  2007;7:5.
Background
Inhibition of intestinal peristalsis is a major side effect of opioid analgesics. Although tramadol is an opioid-like analgesic, its effect on gut motility is little known. Therefore, the effect of (+)-tramadol, (-)-tramadol and the major metabolite O-desmethyltramadol on intestinal peristalsis in vitro and their mechanisms of action were examined. Distension-induced peristalsis was recorded in fluid-perfused segments of the guinea pig small intestine. The intraluminal peristaltic pressure threshold (PPT) was used to quantify the motor effects of extraserosally administered drugs.
Results
Racemic tramadol, its (+)- and (-)-enantiomers and the major metabolite O-desmethyltramadol (0.1 – 100 μM) concentration-dependently increased PPT until peristalsis was transiently or persistently abolished. The rank order of potency was (-)-tramadol < (+)-tramadol
Conclusion
The results show that the metabolite O-desmethyltramadol is more potent in inhibiting peristalsis than its parent compound. The action of all tramadol forms depends on opioid receptors, and that of (+)- and (-)-tramadol also involves adrenoceptors.
doi:10.1186/1471-2210-7-5
PMCID: PMC1839083  PMID: 17367519
BMC Pharmacology  2007;7:4.
Background
Dehydroepiandrosterone (DHEA) released by adrenal glands may be converted to androgens and estrogens mainly in the gonadal, adipose, mammary, hepatic and nervous tissue. DHEA is also a key neurosteroid and has antiglucocorticoid activity. DHEA has been used for the treatment of a number of diseases, including obesity; its pharmacological effects depend on large oral doses, which effect rapidly wanes in part because of its short half-life in plasma. Since steroid hormone esters circulate for longer periods, we have studied here whether the administration of DHEA oleoyl ester may extend its pharmacologic availability by keeping high circulating levels.
Results
Tritium-labelled oleoyl-DHEA was given to Wistar male and female rats by gastric tube. The kinetics of appearance of the label in plasma was unrelated to sex; the pattern being largely coincident with the levels of DHEA-sulfate only in females, and after 2 h undistinguishable from the results obtained using labelled DHEA gavages; in the short term, practically no lipophilic DHEA label was found in plasma. After 24 h only a small fraction of the label remained in the rat organs, with a different sex-related distribution pattern coincident for oleoyl- and free- DHEA gavages. The rapid conversion of oleoyl-DHEA into circulating DHEA-sulfate was investigated using stomach, liver and intestine homogenates; which hydrolysed oleoyl-DHEA optimally near pH 8. Duodenum and ileum contained the highest esterase activities. Pure hog pancreas cholesterol-esterase broke down oleoyl-DHEA at rates similar to those of oleoyl-cholesterol. The intestinal and liver esterases were differently activated by taurocholate and showed different pH-activity patterns than cholesterol esterase, suggesting that oleoyl-DHEA can be hydrolysed by a number of esterases in the lumen (e.g. cholesterol-esterase), in the intestinal wall and the liver.
Conclusion
The esterase activities found may condition the pharmacological availability (and depot effect) of orally administered steroid hormone fatty acid esters such as oleoyl-DHEA. The oral administration of oleoyl-DHEA in order to extend DHEA plasma availability has not been proved effective, since the ester is rapidly hydrolysed, probably in the intestine itself, and mainly converted to DHEA-sulfate at least in females.
doi:10.1186/1471-2210-7-4
PMCID: PMC1831771  PMID: 17346356
BMC Pharmacology  2007;7:3.
Background
An injection of estradiol valerate (EV) provides estradiol for a prolonged period. Recent research indicates that a single 2.0 mg injection of EV modifies a female rat's appetite for alcoholic beverages. This research extends the initial research by assessing 8 doses of EV (from .001 to 2.0 mg/female rat), as well assessing the effects of 2.0 mg EV in females with ovariectomies.
Results
With the administration of EV, there was a dose-related loss of bodyweight reaching the maximum loss, when it occurred, at about 4 days after injections. Subsequently, rats returned to gaining weight regularly. Of the doses tested, only the 2.0 mg dose produced a consistent increase in intake of ethanol during the time previous research indicated that the rats would show enhanced intakes. There was, however, a dose-related trend for smaller doses to enhance intakes. Rats with ovariectomies showed a similar pattern of effects, to intact rats, with the 2 mg dose. After extensive histories of intake of alcohol, both placebo and EV-treated females had estradiol levels below the average measured in females without a history of alcohol-intake.
Conclusion
The data support the conclusion that pharmacological doses of estradiol can produce enduring changes that are manifest as an enhanced appetite for alcoholic beverages. The effect can occur among females without ovaries.
doi:10.1186/1471-2210-7-3
PMCID: PMC1821017  PMID: 17335585
BMC Pharmacology  2007;7:2.
Background
Agents belonging to diverse chemical classes are used clinically as general anesthetics. The molecular targets mediating their actions are however still only poorly defined. Both chemical diversity and substantial differences in the clinical actions of general anesthetics suggest that general anesthetic agents may have distinct pharmacological targets. It was demonstrated previously that the immobilizing action of etomidate and propofol is completely, and the immobilizing action of isoflurane partly mediated, by β3-containing GABAA receptors. This was determined by using the β3(N265M) mice, which carry a point mutation known to decrease the actions of general anesthetics at recombinant GABAA receptors. In this communication, we analyzed the contribution of β3-containing GABAA receptors to the pharmacological actions of isoflurane, etomidate and propofol by means of β3(N265M) mice.
Results
Isoflurane decreased core body temperature and heart rate to a smaller degree in β3(N265M) mice than in wild type mice, indicating a minor but significant role of β3-containing GABAA receptors in these actions. Prolonged time intervals in the ECG and increased heart rate variability were indistinguishable between genotypes, suggesting no involvement of β3-containing GABAA receptors. The anterograde amnesic action of propofol was indistinguishable in β3(N265M) and wild type mice, suggesting that it is independent of β3-containing GABAA receptors. The increase of heart rate variability and prolongation of ECG intervals by etomidate and propofol were also less pronounced in β3(N265M) mice than in wild type mice, pointing to a limited involvement of β3-containing GABAA receptors in these actions. The lack of etomidate- and propofol-induced immobilization in β3(N265M) mice was also observed in congenic 129X1/SvJ and C57BL/6J backgrounds, indicating that this phenotype is stable across different backgrounds.
Conclusion
Our results provide evidence for a defined role of β3-containing GABAA receptors in mediating some, but not all, of the actions of general anesthetics, and confirm the multisite model of general anesthetic action. This pharmacological separation of anesthetic endpoints also suggests that subtype-selective substances with an improved side-effect profile may be developed.
doi:10.1186/1471-2210-7-2
PMCID: PMC1810244  PMID: 17319964
BMC Pharmacology  2007;7:1.
Background
Polymeric alkylpyridinium salts (poly-APS), are chemical defences produced by marine sponges including Reniera sarai. Poly-APS have previously been shown to effectively deliver macromolecules into cells. The efficiency of this closely follows the ability of poly-APS to form transient pores in membranes, providing strong support for a pore-based delivery mechanism. Recently, water soluble compounds have been synthesised that are structurally related to the natural polymers but bear a different number of pyridinium units. These compounds may share a number of bio-activities with poly-APS. Using electrophysiology, calcium imaging and 1,6-diphenyl-1,3,5-hexatriene imaging, the pore forming properties of poly-APS and four related synthetic oligomers have been tested on primary cultured rat hippocampal neurones.
Results
Acute application of poly-APS (0.5 μg/ml), reduced membrane potential, input resistance and suppressed action potential firing. Poly-APS evoked inward cation currents with linear current-voltage relationships similar to actions of pore formers on other cell types. Poly-APS (0.005–5 μg/ml) also produced Ca2+ transients in ~41% of neurones. The dose-dependence of poly-APS actions were complex, such that at 0.05 μg/ml and 5 μg/ml poly-APS produced varying magnitudes of membrane permeability depending on the order of application. Data from surface plasmon resonance analysis suggested accumulation of poly-APS in membranes and subsequent enhanced poly-APS binding. Even at 10–100 fold higher concentrations, none of the synthetic compounds produced changes in electrophysiological characteristics of the same magnitude as poly-APS. Of the synthetic oligomers tested compounds 1 (monomeric) and tetrameric 4 (5–50 μg/ml) induced small transient currents and 3 (trimeric) and 4 (tetrameric) produced significant Ca2+ transients in hippocampal neurones.
Conclusion
Poly-APS induced pore formation in hippocampal neurones and such pores were transient, with neurones recovering from exposure to these polymers. Synthetic structurally related oligomers were not potent pore formers when compared to poly-APS and affected a smaller percentage of the hippocampal neurone population. Poly-APS may have potential as agents for macromolecular delivery into CNS neurones however; the smaller synthetic oligomers tested in this study show little potential for such use. This comparative analysis indicated that the level of polymerisation giving rise to the supermolecular structure in the natural compounds, is likely to be responsible for the activity here reported.
doi:10.1186/1471-2210-7-1
PMCID: PMC1797161  PMID: 17274812

Results 1-16 (16)