Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study 
BMC Pediatrics  2013;13:207.
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Very different models using clinical parameters at an early postnatal age to predict BPD have been developed with little extensive quantitative validation. The objective of this study is to review and validate clinical prediction models for BPD.
We searched the main electronic databases and abstracts from annual meetings. The STROBE instrument was used to assess the methodological quality. External validation of the retrieved models was performed using an individual patient dataset of 3229 patients at risk for BPD. Receiver operating characteristic curves were used to assess discrimination for each model by calculating the area under the curve (AUC). Calibration was assessed for the best discriminating models by visually comparing predicted and observed BPD probabilities.
We identified 26 clinical prediction models for BPD. Although the STROBE instrument judged the quality from moderate to excellent, only four models utilised external validation and none presented calibration of the predictive value. For 19 prediction models with variables matched to our dataset, the AUCs ranged from 0.50 to 0.76 for the outcome BPD. Only two of the five best discriminating models showed good calibration.
External validation demonstrates that, except for two promising models, most existing clinical prediction models are poor to moderate predictors for BPD. To improve the predictive accuracy and identify preterm infants for future intervention studies aiming to reduce the risk of BPD, additional variables are required. Subsequently, that model should be externally validated using a proper impact analysis before its clinical implementation.
PMCID: PMC3878731  PMID: 24345305
Prediction rules; Prognostic models; Calibration; Discrimination; Preterm infants; Chronic lung disease
2.  NeOProM: Neonatal Oxygenation Prospective Meta-analysis Collaboration study protocol 
BMC Pediatrics  2011;11:6.
The appropriate level of oxygenation for extremely preterm neonates (<28 weeks' gestation) to maximise the greatest chance of survival, without incurring significant morbidity, remains unknown. Infants exposed to lower levels of oxygen (targeting oxygen saturations of <90%) in the first weeks of life are at increased risk of death, cerebral palsy, patent ductus arteriosus, pulmonary vascular resistance and apnoea, whilst those maintained in higher levels of oxygen (targeting oxygen saturations of >90%) have been reported to have greater rates of morbidity including retinopathy of prematurity and chronic lung disease. In order to answer this clinical dilemma reliably, large scale trial evidence is needed.
To detect a small but important 4% increase in death or severe disability in survivors, over 5000 neonates would need to be recruited. As extreme prematurity affects 1% of births, such a project undertaken by one trial group would be prohibitively lengthy and expensive. Hence, the Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration has been formed. A prospective meta-analysis (PMA) is one where studies are identified, evaluated, and determined to be eligible before the results of any included studies are known or published, thereby avoiding some of the potential biases inherent in standard, retrospective meta-analyses. This methodology provides the same strengths as a single large-scale multicentre randomised study whilst allowing greater pragmatic flexibility. The NeOProM Collaboration protocol (NCT01124331) has been agreed prior to the results of individual trials being available. This includes pre-specifying the hypotheses, inclusion criteria and outcome measures to be used. Each trial will first publish their respective results as they become available and the combined meta-analytic results, using individual patient data, will be published when all trials are complete. The primary outcome to be assessed is a composite outcome of death or major disability at 18 months - 2 years corrected age. Secondary outcomes include several measures of neonatal morbidity. The size of the combined dataset will allow the effect of the interventions to be explored more reliably with respect to pre-specified patient- and intervention-level characteristics.
Results should be available by 2014.
PMCID: PMC3025869  PMID: 21235822
3.  Inhaled Nitric Oxide in preterm infants: a systematic review and individual patient data meta-analysis 
BMC Pediatrics  2010;10:15.
Preterm infants requiring assisted ventilation are at significant risk of both pulmonary and cerebral injury. Inhaled Nitric Oxide, an effective therapy for pulmonary hypertension and hypoxic respiratory failure in the full term infant, has also been studied in preterm infants. The most recent Cochrane review of preterm infants includes 11 studies and 3,370 participants. The results show a statistically significant reduction in the combined outcome of death or chronic lung disease (CLD) in two studies with routine use of iNO in intubated preterm infants. However, uncertainty remains as a larger study (Kinsella 2006) showed no significant benefit for iNO for this combined outcome. Also, trials that included very ill infants do not demonstrate significant benefit. One trial of iNO treatment at a later postnatal age reported a decrease in the incidence of CLD. The aim of this individual patient meta-analysis is to confirm or refute these potentially conflicting results and to determine the extent to which patient or treatment characteristics may explain the results and/or may predict benefit from inhaled Nitric Oxide in preterm infants.
The Meta-Analysis of Preterm Patients on inhaled Nitric Oxide (MAPPiNO) Collaboration will perform an individual patient data meta-analysis to answer these important clinical questions. Studies will be included if preterm infants receiving assisted ventilation are randomized to receive inhaled Nitric Oxide or to a control group. The individual patient data provided by the Collaborators will be analyzed on an intention-to-treat basis where possible. Binary outcomes will be analyzed using log-binomial regression models and continuous outcomes will be analyzed using linear fixed effects models. Adjustments for trial differences will be made by including the trial variable in the model specification.
Thirteen (13) trials, with a total of 3567 infants are eligible for inclusion in the MAPPiNO systematic review. To date 11 trials (n = 3298, 92% of available patients) have agreed to participate. Funding was successfully granted from Ikaria Inc as an unrestricted grant. A collaborative group was formed in 2006 with data collection commencing in 2007. It is anticipated that data analysis will commence in late 2009 with results being publicly available in 2010.
PMCID: PMC2860486  PMID: 20331899
4.  Elective high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome: an individual patient data meta-analysis 
BMC Pediatrics  2009;9:33.
Despite the considerable amount of evidence from randomized controlled trials and meta-analyses, uncertainty remains regarding the efficacy and safety of high-frequency oscillatory ventilation as compared to conventional ventilation in the early treatment of respiratory distress syndrome in preterm infants. This results in a wide variation in the clinical use of high-frequency oscillatory ventilation for this indication throughout the world. The reasons are an unexplained heterogeneity between trial results and a number of unanswered, clinically important questions. Do infants with different risk profiles respond differently to high-frequency oscillatory ventilation? How does the ventilation strategy affect outcomes? Does the delay – either from birth or from the moment of intubation – to the start of high-frequency oscillation modify the effect of the intervention? Instead of doing new trials, those questions can be addressed by re-analyzing the individual patient data from the existing randomized controlled trials.
A systematic review with meta-analysis based on individual patient data. This involves the central collection, validation and re-analysis of the original individual data from each infant included in each randomized controlled trial addressing this question.
The study objective is to estimate the effect of high-frequency oscillatory ventilation on the risk for the combined outcome of death or bronchopulmonary dysplasia or a severe adverse neurological event. In addition, it will explore whether the effect of high-frequency oscillatory ventilation differs by the infant's risk profile, defined by gestational age, intrauterine growth restriction, severity of lung disease at birth and whether or not corticosteroids were given to the mother prior to delivery. Finally, it will explore the importance of effect modifying factors such as the ventilator device, ventilation strategy and the delay to the start of high-frequency ventilation.
An international collaborative group, the PreVILIG Collaboration (Prevention of Ventilator Induced Lung Injury Group), has been formed with the investigators of the original randomized trials to conduct this systematic review. In the field of neonatology, individual patient data meta-analysis has not been used previously. Final results are expected to be available by the end of 2009.
PMCID: PMC2698824  PMID: 19445701

Results 1-4 (4)