Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
Year of Publication
Document Types
1.  Subtenon injection of natural leukocyte interferon α-2a in diabetic macular edema: a case report 
BMC Ophthalmology  2013;13:63.
To report the effect of subtenon injections of natural leukocyte interferon α-2a (IFNα) on best corrected visual acuity (BCVA) and central macular thickness (CMT) in a patient with diabetic macular edema (DME).
Case presentation
A 66-year-old man affected by DME, with glycated hemoglobin (HbA1c) at 6.9%, refractory to laser grid treatment and intravitreal injections of triamcinolone, was selected to receive a cycle of three subtenon injections/week of IFNα (1×106 IU/ml). BCVA and CMT, using spectral domain ocular coherence tomography (SD-OCT), were evaluated preoperatively and at 1 week, 1 month, 4 months, and 1 year postoperatively. BCVA and CMT were significantly improved at 1 week after the three injections (20/200 vs. 20/40 and 498 μm vs. 237 μm, respectively). BCVA remained stable during the 1-year follow-up. CMT was slightly increased, but was still lower than the baseline value (215 μm, 255 μm, and 299 μm during the follow-up visits). No adverse events were recorded, with the exception of mild subconjunctival hemorrhage at the injection site.
IFNα, with its immunomodulatory, anti-proliferative and anti-angiogenic actions, was effective in improving BCVA and reducing CMT in refractory DME. Further randomized controlled studies are required to assess the effect of IFNα alone or in combination with other therapies for DME treatment.
PMCID: PMC3829108  PMID: 24165224
Diabetic macular edema; Interferon; Subtenon injections; Central macular thickness; Spectral domain optical coherence tomography
2.  Frequency doubling technology, optical coherence technology and pattern electroretinogram in ocular hypertension 
BMC Ophthalmology  2012;12:33.
To assess which of three methods, namely, optical coherence tomography (OCT), pattern electroretinogram (PERG) or frequency-doubling technology (FDT), is the most sensitive and specific for detecting early glaucomatous damage in ocular hypertension (OH).
Fifty-two patients with OH (24 men and 28 women, mean age of 56 ± 9.6 years) with an intraocular pressure (IOP) > 21 mmHg and fifty-two control patients (25 men and 27 women, mean age of 54.8 ± 10.4 years) with IOP < 21 mmHg, were assessed. All the patients had normal visual acuity, normal optic disk and normal perimetric indices.
All subjects underwent OCT, FDT and PERG. Data were analyzed with unpaired t-tests, Chi-square test and Receiver Operating Characteristic (ROC) curve analyses.
In patients with OH, OCT showed retinal nerve fiber layer (RNFL) thinner than in control group in the superior quadrant (130.16 ± 10.02 vs 135.18 ± 9.27 μm, respectively; p < 0.011) and inferior quadrant (120.14 ± 11.0 vs 132.68 ± 8.03 μm; p < 0.001). FDT showed a significantly higher pattern standard deviation (PSD) (3.46 ± 1.48 vs 1.89 ± 0.7 dB; p < 0.001). With respect to PERG, only the amplitude showed significant differences (p < 0.044) between the two groups. ROC curve analysis revealed a sensitivity and specificity of 92% and 86%, respectively, for FDT-PSD (with an area under the ROC curve of 0.940), whereas with OCT, a sensitivity of 82% and a specificity of 74% was recorded in the inferior RNFL quadrant (with an area under the ROC curve of 0.806) finally with PERG amplitude we found a sensitivity of 52% and specificity of 77% (with an area under the ROC curve of 0.595).
FDT is the most sensitive and specific method for detecting early glaucomatous damage in eyes with OH, and together with OCT, can be useful in identifying those patients who may develop glaucoma.
Trial registration
ISRCT number: ISRCTN70295497
PMCID: PMC3444883  PMID: 22853436
Frequency-doubling technology; Ocular hypertension; Optical coherence tomography; Pattern electroretinogram; Retinal ganglion cells; Retinal nerve fiber layer
3.  Multifocal electroretinogram and Optical Coherence tomography spectral-domain in arc welding macular injury: a case report 
BMC Ophthalmology  2011;11:40.
the purpose of this study was to report a binocular photic retinal injury induced by plasma arc welding and the follow-up after treatment with vitamin supplements for a month. In our study, we used different diagnostic tools such as fluorescein angiography (FA), optical coherence tomography (OCT) and multifocal electroretinogram (mfERG).
Case presentation
in the first visit after five days from arc welding injury in the left eye (LE) the visual acuity was 0.9 and 1.0 in the right eye (RE). FA was normal in both eyes. OCT in the left eye showed normal profile and normal reflectivity and one month later, a hyperreflectivity appeared in the external limiting membrane (ELM). The mfERG signal in the LE was 102.30 nV/deg2 five days after the injury and 112.62 nV/deg2 after one month and in the RE respectively 142.70 nV/deg2 and 159.46 nV/deg2.
in cases of retinal photo injury it is important for the ophthalmologist to evaluate tests such as OCT and the mfERG in the diagnosis and follow-up of the patient because the recovery of visual acuity cannot exclude the persistence of phototoxic damage charged to the complex inner-outer segment of photoreceptors.
PMCID: PMC3274443  PMID: 22208163
4.  Matrix metalloproteinases and their tissue inhibitors after selective laser trabeculoplasty in pseudoexfoliative secondary glaucoma 
BMC Ophthalmology  2008;8:20.
The aim of this study was to assess changes in metalloproteinases (MMP-2) and tissue inhibitor of metalloproteinases (TIMP-2) following selective laser trabeculoplasty (SLT) in patients with pseudoexfoliative glaucoma (PEXG).
We enrolled 15 patients with PEXG and cataracts (PEXG-C group) and good intraocular pressure (IOP) controlled with β-blockers and dorzolamide eye drops who were treated by cataract phacoemulsification and 15 patients with pseudoexfoliative glaucoma (PEXG-SLT group). The PEXG-SLT patients underwent a trabeculectomy for uncontrolled IOP in the eye that showed increased IOP despite the maximum drug treatment with β-blockers and dorzolamide eye drops and after ineffective selective laser trabeculoplasty (SLT). The control group consisted of 15 subjects with cataracts. Aqueous humor was aspirated during surgery from patients with PEXG-C, PEXG-SLT and from matched control patients with cataracts during cataract surgery or trabeculectomy. The concentrations of MMP-2 and TIMP-2 in the aqueous humor were assessed with commercially available ELISA kits.
In PEXG-SLT group in the first 10 days after SLT treatment a significant reduction in IOP was observed: 25.8 ± 1.9 vs 18.1.0 ± 1.4 mm/Hg (p < 0.001), but after a mean time of 31.5 ± 7.6 days IOP increased and returned to pretreatment levels: 25.4 ± 1.6 mm/Hg (p < 0.591). Therefore a trabeculectomy was considered necessary.
The MMP-2 in PEXG-C was 57.77 ± 9.25 μg/ml and in PEXG-SLT was 58.52 ± 9.66 μg/ml (p < 0.066). TIMP-2 was 105.19 ± 28.53 μg/ml in PEXG-C and 105.96 ± 27.65 μg/ml in PEXG-SLT (p < 0.202). The MMP-2/TIMP-2 ratio in the normal subjects was 1.11 ± 0.44. This ratio increase to 1.88 ± 0.65 in PEXG-C (p < 0.001) and to 1.87 ± 0.64 in PEXG-SLT (p < 0.001). There was no statistically significant difference between the PEXG-C and PEXG-SLT ratios (p < 0.671).
This case series suggest that IOP elevation after SLT can be a serious adverse event in some PEXG patients. The IOP increase in these cases would be correlated to the failure to decrease the TIMP-2/MMP-2 ratio.
Trial registration
Current Controlled Trials ISRCTN79745214
PMCID: PMC2575190  PMID: 18939999
5.  Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema 
BMC Ophthalmology  2008;8:5.
To assess the efficacy of the intravitreal (IVT) injection of Triamcinolone Acetonide (TA) as compared to posterior subtenon (SBT) capsule injection for the treatment of cystoid diabetic macular edema.
Fourteen patients with type II diabetes mellitus and on insulin treatment, presenting diffuse cystoid macular edema were recruited. Before TA injection all focal lakes were treated by laser photocoagulation. In the same patients one eye was assigned to 4 mg IVT injection of TA and the fellow eye was then treated with 40 mg SBT injection of TA. Before and one, three and six months after treatment we measured visual acuity with ETDRS chart as well as thickness of the macula with optical coherence tomography (OCT) and intraocular pressure (IOP).
The eyes treated with an IVT injection displayed significant improvement in visual acuity, both after one (0.491 ± 0.070; p < 0.001) and three months (0.500 ± 0.089; p < 0.001) of treatment. Significant improvement was displayed also in eyes treated with an SBT injection, again after one (0.455 ± 0.069; p < 0.001) and three months (0.427 ± 0.065; p < 0.001). The difference between an IVT injection (0.809 ± 0.083) and SBT injection (0.460 ± 0.072) becomes significant six months after the treatment (p < 0.001).
Macular thickness of the eyes treated with IVT injection was significantly reduced both after one (222.7 ± 13.4 μm; p < 0.001) and after three months (228.1 ± 10.6 μm; p < 0.001) of treatment. The eyes treated with SBT injection displayed significant improvement after one (220.1 ± 15.1 μm; p < 0.001) and after three months (231.3 ± 10.9 μm; p < 0.001). The difference between the eyes treated with IVT injection (385.2 ± 11.3 μm) and those treated with SBT injection (235.4 ± 8.7 μm) becomes significant six months after the treatment (p < 0.001).
Intraocular pressure of the eyes treated with IVT injection significantly increased after one month (17.7 ± 1.1 mm/Hg; p < 0.020), three (18.2 ± 1.2 mm/Hg; p < 0.003) and six month (18.1 ± 1.3 mm/Hg; p < 0.007) when compared to baseline value (16.1 ± 1.402 mm/Hg). In the SBT injection eyes we didn't display a significant increase of intraocular pressure after one (16.4 ± 1.2 mm/Hg; p < 0.450), three (16.3 ± 1.1 mm/Hg; p < 0.630) and six months (16.2 ± 1.1 mm/Hg; p < 0.720) when compared to baseline value (16.2 ± 1.3 mm/Hg).
The parabulbar subtenon approach can be considered a valid alternative to the intravitreal injection.
Trial registration
Current Controlled Trials ISRCTN67086909
PMCID: PMC2277375  PMID: 18366650

Results 1-5 (5)