Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function 
BMC Nephrology  2011;12:64.
Glomerular damage in IgA nephropathy (IgAN) is mediated by complement activation via the alternative and lectin pathways. Therefore, we focused on molecules stabilizing and regulating the alternative pathway C3 convertase in urine which might be associated with IgAN pathogenesis.
Membrane attack complex (MAC), properdin (P), factor H (fH) and Complement receptor type 1 (CR1) were quantified in urine samples from 71 patients with IgAN and 72 healthy controls. Glomerular deposition of C5, fH and P was assessed using an immunofluorescence technique and correlated with histological severity of IgAN and clinical parameters. Fibrotic changes and glomerular sclerosis were evaluated in renal biopsy specimens.
Immunofluorescence studies revealed glomerular depositions of C5, fH and P in patients with IgAN. Urinary MAC, fH and P levels in IgAN patients were significantly higher than those in healthy controls (p < 0.001), but CR1 was significantly lower than that in healthy controls (p < 0.001). Urinary MAC and fH levels were positively correlated with serum creatinine (sCr), urinary N-acetyl-β-D-glucosaminidase (u-NAG), urinary β2 microglobulin (u-Bm), urinary protein (p < 0.001), interstitial fibrosis (MAC: p < 0.01, fH: p < 0.05) and the percentage of global glomerular sclerosis (p < 0.01). Urinary P was positively correlated with u-NAG, u-Bm, and urinary protein (p < 0.01).
Complement activation occurs in the urinary space in IgAN and the measurement of levels of MAC and fH in the urine could be a useful indicator of renal injury in patients with IgAN.
PMCID: PMC3283454  PMID: 22111871
2.  Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis 
BMC Nephrology  2010;11:34.
The complement system is vital for innate immunity and is implicated in the pathogenesis of inflammatory diseases and the mechanism of host defense. Complement deficiencies occasionally cause life-threatening diseases. In hemodialysis (HD) patients, profiles on complement functional activity and deficiency are still obscure. The objectives of the present study were to measure the functional complement activities of the classical pathway (CP), lectin pathway (LP) and alternative pathway (AP) using a novel method and consequently to elucidate the rates of deficiencies among HD patients.
In the present study, 244 HD patients at one dialysis center and 204 healthy controls were enrolled. Functional complement activities were measured simultaneously using the Wielisa®-kit. The combination of the results of these three pathway activities allows us to speculate which candidate complement is deficient; subsequently, the deficient complement was determined.
All three functional complement activities were significantly higher in the HD patients than in the control group (P < 0.01 for all cases). After identifying candidates in both groups with complement deficiencies using the Wielisa®-kit, 16 sera (8.8%) with mannose-binding lectin (MBL) deficiency, 1 serum (0.4%) with C4 deficiency, 1 serum (0.4%) with C9 deficiency, and 1 serum (0.4%) with B deficiency were observed in the HD group, and 18 sera (8.8%) with MBL deficiency and 1 serum (0.5%) with B deficiency were observed in the control group. There were no significant differences in the 5-year mortality rate between each complement-deficient group and the complement-sufficient group among the HD patients.
This is the first report that profiles complement deficiencies by simultaneous measurement of functional activities of the three complement pathways in HD patients. Hemodialysis patients frequently suffer from infections or malignancies, but functional complement deficiencies do not confer additional risk of mortality.
PMCID: PMC3004895  PMID: 21134272
3.  Autoimmune hemolytic anemia occurred prior to evident nephropathy in a patient with chronic hepatitis C virus infection: case report 
BMC Nephrology  2003;4:7.
Renal involvement in patients with chronic hepatitis C virus infection has been suggested to be due to a variety of immunological processes. However, the precise mechanism by which the kidneys are damaged in these patients is still unclear.
Case presentation
A 66 year old man presented with the sudden onset of autoimmune hemolytic anemia. Concomitant with a worsening of hemolysis, his initially mild proteinuria and hemoglobinuria progressed. On admission, laboratory tests revealed that he was positive for hepatitis C virus in his blood, though his liver function tests were all normal. The patient displayed cryoglobulinemia and hypocomplementemia with cold activation, and exhibited a biological false positive of syphilic test. Renal biopsy specimens showed signs of immune complex type nephropathy with hemosiderin deposition in the tubular epithelial cells.
The renal histological findings in this case are consistent with the deposition of immune complexes and hemolytic products, which might have occurred as a result of the patient's underlying autoimmune imbalance, autoimmune hemolytic anemia, and chronic hepatitis C virus infection.
PMCID: PMC200975  PMID: 12946280

Results 1-3 (3)