PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Randomised Controlled Trial to determine the appropriate time to initiate peritoneal dialysis after insertion of catheter to minimise complications (Timely PD study) 
BMC Nephrology  2010;11:11.
Background
The most appropriate time to initiate dialysis after surgical insertion of Tenckhoff catheters is not clear in the literature. There is the possibility of peritoneal dialysis (PD) complications such as leakage and infection if dialysis is started too soon after insertion. However, much morbidity and expense could be saved by reducing dependency on haemodialysis (HD) by earlier initiation of PD post catheter insertion. Previous studies are observational and mostly compare immediate with delayed use. The primary objective is to determine the safest and shortest time interval between surgical placement of a Tenckhoff catheter and starting PD.
Methods/Design
This is a randomised controlled trial of patients who will start PD after insertion of Tenckhoff catheter at Royal Brisbane and Women's Hospital (RBWH) or Rockhampton Base Hospital (RBH) who meet the inclusion criteria. Patients will be stratified by site and diabetic status. The patients will be randomised to one of three treatment groups. Group 1 will start PD one week after Tenckhoff catheter insertion, group 2 at two weeks and group 3 at four weeks. Nurses and physicians will be blinded to the randomised allocation. The primary end point is the complication rate (leaks and infection) after initiation of PD.
Discussion
The study will determine the most appropriate time to initiate PD after placement of a Tenckhoff catheter.
Trial Registration
ACTRN12610000076077
doi:10.1186/1471-2369-11-11
PMCID: PMC2898765  PMID: 20565984
2.  Optimising intraperitoneal gentamicin dosing in peritoneal dialysis patients with peritonitis (GIPD) study 
BMC Nephrology  2009;10:42.
Background
Antibiotics are preferentially delivered via the peritoneal route to treat peritonitis, a major complication of peritoneal dialysis (PD), so that maximal concentrations are delivered at the site of infection. However, drugs administered intraperitoneally can be absorbed into the systemic circulation. Drugs excreted by the kidneys accumulate in PD patients, increasing the risk of toxicity. The aim of this study is to examine a model of gentamicin pharmacokinetics and to develop an intraperitoneal drug dosing regime that maximises bacterial killing and minimises toxicity.
Methods/Design
This is an observational pharmacokinetic study of consecutive PD patients presenting to the Royal Brisbane and Women's Hospital with PD peritonitis and who meet the inclusion criteria. Participants will be allocated to either group 1, if anuric as defined by urine output less than 100 ml/day, or group 2: if non-anuric, as defined by urine output more than 100 ml/day. Recruitment will be limited to 15 participants in each group. Gentamicin dosing will be based on the present Royal Brisbane & Women's Hospital guidelines, which reflect the current International Society for Peritoneal Dialysis Peritonitis Treatment Recommendations. The primary endpoint is to describe the pharmacokinetics of gentamicin administered intraperitoneally in PD patients with peritonitis based on serial blood and dialysate drug levels.
Discussion
The study will develop improved dosing recommendations for intraperitoneally administered gentamicin in PD patients with peritonitis. This will guide clinicians and pharmacists in selecting the most appropriate dosing regime of intraperitoneal gentamicin to treat peritonitis.
Trial Registration
ACTRN12609000446268
doi:10.1186/1471-2369-10-42
PMCID: PMC2800106  PMID: 20003546
3.  Assessment of arterial stiffness, oxidative stress and inflammation in acute kidney injury 
BMC Nephrology  2009;10:15.
Background
It is well know that arterial stiffness, oxidative stress and inflammation are features of chronic kidney disease. The arterial changes have a multitude of potential interconnected causes including endothelial dysfunction, oxidative stress, inflammation, atherosclerosis and vascular calcification. There is evidence that arterial stiffness becomes progressively worse as CKD progresses. The contribution of the biochemical changes of uremic toxicity to arterial stiffness is less clear. The aim of this study is to elucidate the vascular changes in acute kidney injury. We hypothesise that arterial stiffness will be increased during acute kidney injury and this will return to normal after kidney function recovers.
Methods/Design
One hundred and forty four patients with acute kidney injury defined as an acute increase in serum creatinine to > 133 μmol/l or urea > 14.3 mmol/l or urine output < 410 ml/day will be recruited. Baseline measures of aortic pulse wave velocity, augmentation index, and brachial and central blood pressure will be recorded along with blood measures for oxidative stress and inflammation. Repeat measures will be taken at six and 12 months after the onset of the acute kidney injury.
Discussion
The role and contribution of the biochemical changes to arterial stiffness in the acute phase of kidney disease is not known. This study will primarily assess the time course changes in pulse wave velocity from the onset of acute kidney injury and after recovery. In addition it will assess augmentation index, central blood pressure and oxidative stress and inflammation. This may shed light on the contribution of biochemical kidney toxins on arterial stiffness in both acute kidney injury and chronic kidney disease.
Trial Registration
ACTRN 12609000285257
doi:10.1186/1471-2369-10-15
PMCID: PMC2702366  PMID: 19538714
4.  Comparison of markers of oxidative stress, inflammation and arterial stiffness between incident hemodialysis and peritoneal dialysis patients – an observational study 
BMC Nephrology  2009;10:8.
Background
Patients on peritoneal and hemodialysis have accelerated atherosclerosis associated with an increase in cardiovascular morbidity and mortality. The atherosclerosis is associated with increased arterial stiffness, endothelial dysfunction and elevated oxidative stress and inflammation. The aims of this study are to investigate the effects of peritoneal and hemodialysis on arterial stiffness, vascular function, myocardial structure and function, oxidative stress and inflammation in incident patients with end stage kidney disease.
Methods
This is an observational study. Eighty stage five CKD patients will be enrolled and followed for one-year. Primary outcome measures will be changes in 1) arterial stiffness measured by aortic pulse wave velocity, 2) oxidative stress assessed by plasma F2 isoprostanes and 3) inflammation measured by plasma pentraxin-3. Secondary outcomes will include additional measures of oxidative stress and inflammation, changes in vascular function assessed using the brachial artery reactivity technique, carotid artery intimal medial thickness, augmentation index and trans thoracic echocardiography to assess left ventricular geometry, and systolic and diastolic function. Patients will undergo these measures at baseline (6–8 weeks prior to starting dialysis therapy), then at six and 12 months after starting dialysis.
Discussion
The results of this study may guide the choice of dialysis modality in the first year of treatment. It may also lead to a larger study prospectively assessing the effect of dialysis modality on cardiovascular morbidity and mortality.
Trial Registration
ACTRN12609000049279
doi:10.1186/1471-2369-10-8
PMCID: PMC2666726  PMID: 19284599
5.  Astaxanthin vs placebo on arterial stiffness, oxidative stress and inflammation in renal transplant patients (Xanthin): a randomised controlled trial 
BMC Nephrology  2008;9:17.
Background
There is evidence that renal transplant recipients have accelerated atherosclerosis manifest by increased cardiovascular morbidity and mortality. The high incidence of atherosclerosis is, in part, related to increased arterial stiffness, vascular dysfunction, elevated oxidative stress and inflammation associated with immunosuppressive therapy. The dietary supplement astaxanthin has shown promise as an antioxidant and anti-inflammatory therapeutic agent in cardiovascular disease. The aim of this trial is to investigate the effects of astaxanthin supplementation on arterial stiffness, oxidative stress and inflammation in renal transplant patients.
Method and Design
This is a randomised, placebo controlled clinical trial. A total of 66 renal transplant recipients will be enrolled and allocated to receive either 12 mg/day of astaxanthin or an identical placebo for one-year. Patients will be stratified into four groups according to the type of immunosuppressant therapy they receive: 1) cyclosporine, 2) sirolimus, 3) tacrolimus or 4) prednisolone+/-azathioprine, mycophenolate mofetil or mycophenolate sodium. Primary outcome measures will be changes in 1) arterial stiffness measured by aortic pulse wave velocity (PWV), 2) oxidative stress assessed by plasma isoprostanes and 3) inflammation by plasma pentraxin 3. Secondary outcomes will include changes in vascular function assessed using the brachial artery reactivity (BAR) technique, carotid artery intimal medial thickness (CIMT), augmentation index (AIx), left ventricular afterload and additional measures of oxidative stress and inflammation. Patients will undergo these measures at baseline, six and 12 months.
Discussion
The results of this study will help determine the efficacy of astaxanthin on vascular structure, oxidative stress and inflammation in renal transplant patients. This may lead to a larger intervention trial assessing cardiovascular morbidity and mortality.
Trial Registration
ACTRN12608000159358
doi:10.1186/1471-2369-9-17
PMCID: PMC2666668  PMID: 19091127

Results 1-5 (5)