PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Distinct and stage specific nuclear factors regulate the expression of falcipains, Plasmodium falciparum cysteine proteases 
Background
Plasmodium falciparum cysteine proteases (falcipains) play indispensable roles in parasite infection and development, especially in the process of host erythrocyte rupture/invasion and hemoglobin degradation. No detailed molecular analysis of transcriptional regulation of parasite proteases especially cysteine proteases has yet been reported. In this study, using a combination of transient transfection assays and electrophoretic mobility shift assays (EMSA), we demonstrate the presence of stage specific nuclear factors that bind to unique sequence elements in the 5'upstream regions of the falcipains and probably modulate the expression of cysteine proteases.
Results
Falcipains differ in their timing of expression and exhibit ability to compensate each other's functions at asexual blood stages of the parasite. Present study was undertaken to study the transcriptional regulation of falcipains. Transient transfection assay employing firefly luciferase as a reporter revealed that a ~1 kb sequence upstream of translational start site is sufficient for the functional transcriptional activity of falcipain-1 gene, while falcipain-2, -2' and -3 genes that exist within 12 kb stretch on chromosome 11 require ~2 kb upstream sequences for the expression of reporter luciferase activity. EMSA analysis elucidated binding of distinct nuclear factors to specific sequences within the 5'upstream regions of falcipain genes. Analysis of falcipains' 5'upstream regulatory regions did not reveal the presence of sequences known to bind general eukaryotic factors. However, we did find parasite specific sequence elements such as poly(dA) poly(dT) tracts, CCAAT boxes and a single 7 bp-G rich sequence, (A/G)NGGGG(C/A) in the 5' upstream regulatory regions of these genes, thereby suggesting the role(s) of Plasmodium specific transcriptional factors in the regulation of falcipain genes.
Conclusion
Taken together, these results suggest that expression of Plasmodium cysteine proteases is regulated at the transcriptional level and parasite specific factors regulate the expression of falcipain genes. These findings open new venues for further studies in identification of parasite specific transcription factors.
doi:10.1186/1471-2199-9-47
PMCID: PMC2409366  PMID: 18477411
2.  Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies 
Background
The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax;
Results
Here, we report the molecular characterization of a serine protease (acsp30)-encoding gene from A. culicifacies, which was expressed in high abundance in the refractory strain compared to the susceptible (S) strain. The transcriptional upregulation of acsp30 upon Plasmodium challenge in the refractory strain coincided with ookinete invasion of mosquito midgut. Gene organization and primary sequence of acsp30 were identical in the R and S strains suggesting a divergent regulatory status of acsp30 in these strains. To examine this further, the upstream regulatory sequences of acsp30 were isolated, cloned and evaluated for the presence of promoter activity. The 702 bp upstream region of acsp30 from the two strains revealed sequence divergence. The promoter activity measured by luciferase-based reporter assay was shown to be 1.5-fold higher in the R strain than in the S. Gel shift experiments demonstrated a differential recruitment of nuclear proteins to upstream sequences of acsp30 as well as a difference in the composition of nuclear proteins in the two strains, both of which might contribute to the relative abundance of acsp30 in the R strain;
Conclusion
The specific upregulation of acsp30 in the R strain only in response to Plasmodium infection is suggestive of its role in contributing the refractory phenotype to the A. culicifacies mosquito population.
doi:10.1186/1471-2199-8-33
PMCID: PMC1876469  PMID: 17502004

Results 1-2 (2)