Search tips
Search criteria

Results 1-25 (104)

Clipboard (0)
Year of Publication
1.  Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome 
BMC Microbiology  2006;6:104.
The Burkholderia cenocepacia CepIR quorum sensing system has been shown to positively and negatively regulate genes involved in siderophore production, protease expression, motility, biofilm formation and virulence. In this study, two approaches were used to identify genes regulated by the CepIR quorum sensing system. Transposon mutagenesis was used to create lacZ promoter fusions in a cepI mutant that were screened for differential expression in the presence of N-acylhomoserine lactones. A bioinformatics approach was used to screen the B. cenocepacia J2315 genome for CepR binding site motifs.
Four positively regulated and two negatively regulated genes were identified by transposon mutagenesis including genes potentially involved in iron transport and virulence. The promoter regions of selected CepR regulated genes and site directed mutagenesis of the cepI promoter were used to predict a consensus cep box sequence for CepR binding. The first-generation consensus sequence for the cep box was used to identify putative cep boxes in the genome sequence. Eight potential CepR regulated genes were chosen and the expression of their promoters analyzed. Six of the eight were shown to be regulated by CepR. A second generation motif was created from the promoters of these six genes in combination with the promoters of cepI, zmpA, and two of the CepR regulated genes identified by transposon mutagenesis. A search of the B. cenocepacia J2315 genome with the new motif identified 55 cep boxes in 65 promoter regions that may be regulated by CepR.
Using transposon mutagenesis and bioinformatics expression of twelve new genes have been determined to be regulated by the CepIR quorum sensing system. A cep box consensus sequence has been developed based on the predicted cep boxes of ten CepR regulated genes. This consensus cep box has led to the identification of over 50 new genes potentially regulated by the CepIR quorum sensing system.
PMCID: PMC1766932  PMID: 17187664
2.  Effect of iron on the expression of sirR and sitABC in biofilm-associated Staphylococcus epidermidis 
BMC Microbiology  2006;6:103.
Different gene expression patterns correlate with the altered phenotype in biofilm-associated bacteria. Iron and iron-linked genes are thought to play a key-role in biofilm formation. The expression of Fe-linked genes (sirR, sitABC operon) in Staphylococcus epidermidis, was compared in planktonic versus sessile bacteria in vitro and in vivo in a subcutaneous foreign body rat model.
In vitro in a Fe-limited environment, the planktonic form of S. epidermidis produces siderophores and grows slower than in Fe-rich environment. The expression of sirR in planktonic bacteria, in vitro, was not different in medium without Fe or with 1 μM FeCl3. High Fe concentrations (25 μM FeCl3) increased expression of sirR transiently during the early phase of incubation. Expression of sitC in vitro, in planktonic bacteria, was inversely correlated with sirR expression in medium with 25 μM FeCl3: sitC expression decreased for the first 3 hours followed by an up regulation.
In sessile bacteria in vitro, sirR expression was high and independent of the Fe concentration. The expression of sitC was not inversely correlated to sirR expression.
In vivo, expression levels of sirR and of sitABC were high during the initial phase after implantation and, after a transient decrease, remained stable over a period of two weeks.
Our data suggest that the expression of sirR and the regulatory effect of sirR on the sitABC operon are different in planktonic and sessile bacteria.
PMCID: PMC1764749  PMID: 17177984
3.  Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival 
BMC Microbiology  2006;6:102.
Random gene inactivation used to identify cellular functions associated with virulence and survival of Brucella spp has relied heavily upon the use of the transposon Tn5 that integrates at G/C base pairs. Transposons of the mariner family do not require species-specific host factors for efficient transposition, integrate nonspecifically at T/A base pairs, and, at a minimum, provide an alternative approach for gene discovery. In this study, plasmid vector pSC189, containing both the hyperactive transposase C9 and transposon terminal inverted repeats flanking a kanamycin resistance gene, were used to deliver Himar1 transposable element into the B. melitensis genome. Conjugation was performed efficiently and rapidly in less than one generation in order to minimize the formation of siblings while assuring the highest level of genome coverage.
Although previously identified groups or classes of genes required for virulence and survival were represented in the screen, additional novel identifications were revealed and may be attributable to the difference in insertion sequence biases of the two transposons. Mutants identified using a fluorescence-based macrophage screen were further evaluated using gentamicin-based protection assay in macrophages, survival in the mouse splenic clearance model and growth in vitro to identify mutants with reduced growth rates.
The identification of novel genes within previously described groups was expected, and nearly two-thirds of the 95 genes had not been previously reported as contributing to survival and virulence using random Tn5-based mutagenesis. The results of this work provide added insight with regard to the regulatory elements, nutritional demands and mechanisms required for efficient intracellular growth and survival of the organism.
PMCID: PMC1766931  PMID: 17176467
4.  Characterisation of community acquired non-typhoidal Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya 
BMC Microbiology  2006;6:101.
In sub-Saharan Africa community-acquired non-typhoidal Salmonella (NTS) is a major cause of high morbidity and death among children under 5 years of age especially from resource poor settings. The emergence of multidrug resistance is a major challenge in treatment of life threatening invasive NTS infections in these settings.
Overall 170 (51.2%) of children presented with bacteraemia alone, 28 (8.4%) with gastroenteritis and bacteraemia and 134 (40.4%) with gastroenteritis alone. NTS serotypes obtained from all the cases included S. Typhimurium (196; 59%), S. Enteritidis (94; 28.3%) and other serotypes in smaller numbers (42; 12.7%); distribution of these serotypes among cases with bacteremia or gastroenteritis was not significantly different. A significantly higher proportion of younger children (< 3 years of age) and those from the slums presented with invasive NTS compared to older children and those from upper socio-economic groups (p < 0.001). One hundred and forty-seven (44.3%) NTS were resistant to 3 or more antibiotics, and out of these 59% were resistant to ampicillin, chloramphenicol and tetracycline. There was no significant difference in antibiotic resistance between the two serotypes, S. Typhimurium and S. Enteritidis. Ceftriaxone and ciprofloxacin were the only antibiotics tested to which all the NTS were fully susceptible. Using Pulsed Field Gel Electrophoresis (PFGE) there were 3 main patterns of S. Typhimurium and 2 main patterns of S. Enteritidis among cases of bacteraemia and gastroenteritis.
Serotype distribution, antibiotic susceptibility and PFGE patterns of NTS causing bacteraemia and gastroenteritis did not differ significantly. The high prevalence of NTS strains resistant to most of the commonly used antimicrobials is of major public health concern.
PMCID: PMC1764016  PMID: 17173674
5.  A robotic DNA purification protocol and real-time PCR for the detection of Enterobacter sakazakii in powdered infant formulae 
BMC Microbiology  2006;6:100.
Enterobacter sakazakii is the causative agent of rare but severe food-borne infections associated with meningitis, necrotizing enterocolitis and sepsis in infants. Rehydrated powdered infant formulae have been implicated as the source of infection in several outbreaks and sporadic cases. In this work, a real time fluorescence resonance energy transfer PCR assay incorporating an internal amplification control (IAC) was developed for the specific detection of E. sakazakii in foods. Performance of the assay, coupled to an automated DNA extraction system and the E. sakazakii ISO-IDF (TS 22964/RM 210) enrichment procedure, was evaluated on infant formulae and samples from production environment.
The real-time PCR assay had 100% specificity as assessed using 35 E. sakazakii and 184 non-E. sakazakii strains. According to the E. sakazakii strains tested, the detection limits ranged from 5 to 25 genomic copies. Assays on pure cultures (including real-time PCR and DNA extraction) gave a sensitivity of about 102 to 103 CFU/ml. Out of 41 naturally contaminated infant formulae and environmental samples analysed for the presence of E. sakazakii, 23 were positive by real-time PCR and 22 by the conventional culture method, giving 97.5% concordance with the ISO-IDF reference method.
This method, combining specific real-time PCR, automated DNA extraction and ISO-IDF standard enrichments, provides a useful tool for rapid screening of E. sakazakii in food and environmental matrices.
PMCID: PMC1713243  PMID: 17166252
6.  Herd-level risk factors associated with the presence of Phage type 21/28 E. coli O157 on Scottish cattle farms 
BMC Microbiology  2006;6:99.
E. coli O157 is a bacterial pathogen that is shed by cattle and can cause severe disease in humans. Phage type (PT) 21/28 is a subtype of E. coli O157 that is found across Scotland and is associated with particularly severe human morbidity.
A cross-sectional survey of Scottish cattle farms was conducted in the period Feb 2002-Feb 2004 to determine the prevalence of E. coli O157 in cattle herds. Data from 88 farms on which E. coli O157 was present were analysed using generalised linear mixed models to identify risk factors for the presence of PT 21/28 specifically.
The analysis identified private water supply, and northerly farm location as risk factors for PT 21/28 presence. There was a significant association between the presence of PT 21/28 and an increased number of E. coli O157 positive pat samples from a farm, and PT 21/28 was significantly associated with larger E. coli O157 counts than non-PT 21/28 E. coli O157.
PT 21/28 has significant risk factors that distinguish it from other phage types of E. coli O157. This finding has implications for the control of E. coli O157 as a whole and suggests that control could be tailored to target the locally dominant PT.
PMCID: PMC1713242  PMID: 17140453
7.  Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota 
BMC Microbiology  2006;6:98.
A study was designed to elucidate effects of selected carbohydrates on composition and activity of the intestinal microbiota. Five groups of eight rats were fed a western type diet containing cornstarch (reference group), sucrose, potato starch, inulin (a long- chained fructan) or oligofructose (a short-chained fructan). Fructans are, opposite sucrose and starches, not digestible by mammalian gut enzymes, but are known to be fermentable by specific bacteria in the large intestine.
Animals fed with diets containing potato starch, or either of the fructans had a significantly (p < 0.05) higher caecal weight and lower caecal pH when compared to the reference group, indicating increased fermentation. Selective cultivation from faeces revealed a higher amount of lactic acid bacteria cultivable on Rogosa agar in these animals. Additionally, the fructan groups had a lower amount of coliform bacteria in faeces. In the inulin and oligofructose groups, higher levels of butyrate and propionate, respectively, were measured.
Principal Component Analysis of profiles of the faecal microbiota obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of PCR amplified bacterial 16S rRNA genes as well as of Reverse Transcriptase-PCR amplified bacterial 16S rRNA resulted in different phylogenetic profiles for each of the five animal groups as revealed by Principal Component Analysis (PCA) of band patterns.
Even though sucrose and cornstarch are both easily digestible and are not expected to reach the large intestine, the DGGE band patterns obtained indicated that these carbohydrates indeed affected the composition of bacteria in the large gut. Also the two fructans resulted in completely different molecular fingerprints of the faecal microbiota, indicating that even though they are chemically similar, different intestinal bacteria ferment them. Comparison of DNA-based and RNA-based profiles suggested that two species within the phylum Bacteroidetes were not abundant in numbers but had a particularly high ribosome content in the animals fed with inulin.
PMCID: PMC1693562  PMID: 17137493
8.  Variable coordination of cotranscribed genes in Escherichia coli following antisense repression 
BMC Microbiology  2006;6:97.
A majority of bacterial genes belong to tight clusters and operons, which complicates gene functional studies using conventional knock-out methods. Antisense agents can down-regulate the expression of genes without disrupting the genome because they bind mRNA and block its expression. However, it is unclear how antisense inhibition affects expression from genes that are cotranscribed with the target.
To examine the effects of antisense inhibition on cotranscribed genes, we constructed a plasmid expressing the two reporter genes gfp and DsRed as one transcriptional unit. Incubation with antisense peptide nucleic acid (PNA) targeted to the mRNA start codon region of either the upstream gfp or the downstream DsRed gene resulted in a complete expression discoordination from this artificial construct. The same approach was applied to the three cotranscribed genes in the endogenously expressed lac-operon (lacZ, Y and A) and partial downstream expression coordination was seen when the lacZ start codon was targeted with antisense PNA. Targeting the lacY mRNA start codon region showed no effect on the upstream lacZ gene expression whereas expression from the downstream lacA gene was affected as strongly as the lacY gene. Determination of lacZ and lacY mRNA levels revealed a pattern of reduction that was similar to the Lac-proteins, indicating a relation between translation inhibition and mRNA degradation as a response to antisense PNA treatment.
The results show that antisense mediated repression of genes within operons affect cotranscribed genes to a variable degree. Target transcript stability appears to be closely related to inhibition of translation and presumably depends on translating ribosomes protecting the mRNA from intrinsic decay mechanisms. Therefore, for genes within operons and clusters it is likely that the nature of the target transcript will determine the inhibitory effects on cotranscribed genes. Consequently, no simple and specific methods for expression control of a single gene within polycistronic operons are available, and a thorough understanding of mRNA regulation and stability is required to understand the results from both knock-down and knock-out methods used in bacteria.
PMCID: PMC1661596  PMID: 17118182
9.  Structure-based discovery of inhibitors of the YycG histidine kinase: New chemical leads to combat Staphylococcus epidermidis infections 
BMC Microbiology  2006;6:96.
Coagulase-negative Staphylococcus epidermidis has become a major frequent cause of infections in relation to the use of implanted medical devices. The pathogenicity of S. epidermidis has been attributed to its capacity to form biofilms on surfaces of medical devices, which greatly increases its resistance to many conventional antibiotics and often results in chronic infection. It has an urgent need to design novel antibiotics against staphylococci infections, especially those can kill cells embedded in biofilm.
In this report, a series of novel inhibitors of the histidine kinase (HK) YycG protein of S. epidermidis were discovered first using structure-based virtual screening (SBVS) from a small molecular lead-compound library, followed by experimental validation. Of the 76 candidates derived by SBVS targeting of the homolog model of the YycG HATPase_c domain of S. epidermidis, seven compounds displayed significant activity in inhibiting S. epidermidis growth. Furthermore, five of them displayed bactericidal effects on both planktonic and biofilm cells of S. epidermidis. Except for one, the compounds were found to bind to the YycG protein and to inhibit its auto-phosphorylation in vitro, indicating that they are potential inhibitors of the YycG/YycF two-component system (TCS), which is essential in S. epidermidis. Importantly, all these compounds did not affect the stability of mammalian cells nor hemolytic activities at the concentrations used in our study.
These novel inhibitors of YycG histidine kinase thus are of potential value as leads for developing new antibiotics against infecting staphylococci. The structure-based virtual screening (SBVS) technology can be widely used in screening potential inhibitors of other bacterial TCSs, since it is more rapid and efficacious than traditional screening technology.
PMCID: PMC1660542  PMID: 17094812
10.  Identification of pathogenic Leptospira species by conventional or real-time PCR and sequencing of the DNA gyrase subunit B encoding gene 
BMC Microbiology  2006;6:95.
Leptospira is the causative genus of the disease, leptospirosis. Species identification of pathogenic Leptospira in the past was generally performed by either DNA-DNA hybridisation or 16s rRNA gene sequencing. Both methods have inherent disadvantages such as the need for radio-labelled isotopes or significant homology between species. A conventional and real-time PCR amplification and sequencing method was developed for an alternate gene target: DNA gyrase subunit B (gyrB). Phylogenetic comparisons were undertaken between pathogenic Leptospira 16srRNA and gyrB genes using clustering and minimum evolution analysis. In addition 50 unidentified Leptospira isolates were characterised by gyrB sequencing and compared with conventional 16s rRNA sequencing.
A conventional and real-time PCR methodology was developed and optimised for the amplification of the gyrB from pathogenic Leptospira species. Non pathogenic and opportunistic Leptospira species such as L. fainei and L. broomi were not amplified. The gyrB gene shows greater nucleotide divergence (3.5% to 16.1%) than the 16s rRNA gene (0.1% to 1.4%). Minimum evolution analysis reveals that the gyrB has a different evolution topology for L. kirschneri and L. interrogans. When the two genes were compared for the identification of the 50 unknown isolates there was 100% agreement in the results.
This research has successfully developed a methodology for the identification of pathogenic Leptospira using an alternate gene to 16s rRNA. The gyrB encoding gene shows higher nucleotide/evolutionary divergence allowing for superior identification and also the potential for the development of DNA probe based identification.
PMCID: PMC1630700  PMID: 17067399
11.  The biochemical differentiation of Enterobacter sakazakii genotypes 
BMC Microbiology  2006;6:94.
Enterobacter sakazakii is an emergent pathogen that has been associated with neonatal infections through contaminated powdered infant milk formula. The species was defined by Farmer et al. (1980) who described 15 biogroups according to the biochemical characterization of 57 strains. This present study compares genotypes (DNA cluster groups based on partial 16S rDNA sequence analysis) with the biochemical traits for 189 E. sakazakii strains.
Analysis of partial 16S rDNA sequences gave 4 well defined phylogenetic groups. Cluster group 1 was composed of the majority of strains (170/189) and included Biogroups 1–5, 7–9, 11, 13 and 14. Cluster 3 corresponded with Biogroup 15 and cluster 4 with Biogroups 6, 10 and 12. Cluster group 2 comprised a new Biogroup 16. For the isolates in this study, the four DNA cluster groups can be distinguished using the inositol, dulcitol and indole tests.
This study demonstrates an agreement between genotyping (partial 16S rDNA) and biotyping and describes a new biogroup of E. sakazakii.
PMCID: PMC1634753  PMID: 17067387
12.  Functional characterization of a three-component regulatory system involved in quorum sensing-based regulation of peptide antibiotic production in Carnobacterium maltaromaticum 
BMC Microbiology  2006;6:93.
Quorum sensing is a form of cell-to-cell communication that allows bacteria to control a wide range of physiological processes in a population density-dependent manner. Production of peptide antibiotics is one of the processes regulated by quorum sensing in several species of Gram-positive bacteria, including strains of Carnobacterium maltaromaticum. This bacterium and its peptide antibiotics are of interest due to their potential applications in food preservation. The molecular bases of the quorum sensing phenomenon controlling peptide antibiotic production in C. maltaromaticum remain poorly understood. The present study was aimed at gaining a deeper insight into the molecular mechanism involved in quorum sensing-mediated regulation of peptide antibiotic (bacteriocin) production by C. maltaromaticum. We report the functional analyses of the CS (autoinducer)-CbnK (histidine protein kinase)-CbnR (response regulator) three-component regulatory system and the three regulated promoters involved in peptide antibiotic production in C. maltaromaticum LV17B.
CS-CbnK-CbnR system-dependent activation of carnobacterial promoters was demonstrated in both homologous and heterologous hosts using a two-plasmid system with a β-glucuronidase (GusA) reporter read-out. The results of our analyses support a model in which the CbnK-CbnR two-component signal transduction system is necessary and sufficient to transduce the signal of the peptide autoinducer CS into the activation of the promoters that drive the expression of the genes required for production of the carnobacterial peptide antibiotics and the immunity proteins that protect the producer bacterium.
The CS-CbnK-CbnR triad forms a three-component regulatory system by which production of peptide antibiotics by C. maltaromaticum LV17B is controlled in a population density-dependent (or cell proximity-dependent) manner. This regulatory mechanism would permit the bacterial population to synchronize the production of peptide antibiotics and immunity proteins. Such a population-wide action would afford a substantial peptide antibiotic production burst that could increase the ability of the bacterium to inhibit susceptible bacterial competitors. Finally, our CS-CbnK-CbnR-based two-plasmid expression system represents a suitable genetic tool for undertaking structure-function relationship analyses to map the amino acid residues in the components of the CS-CbnK-CbnR system that are required for biological activity. This plasmid system also has potential as a starting point for developing alternative vectors for controlled gene expression in C. maltaromaticum, Lactococcus lactis, and related lactic acid bacteria.
PMCID: PMC1634752  PMID: 17054797
13.  Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils 
BMC Microbiology  2006;6:92.
Species of the tick-transmitted spirochete group Borrelia burgdorferi sensu lato (B. burgdorferi) cause Lyme borreliosis. Acute borrelial infection of the skin has unusual characteristics with only a mild local inflammatory response suggesting that the interaction between borreliae and the cells of the first-line defence might differ from that of other bacteria. It has been reported that human neutrophils phagocytose motile borreliae through an unconventional mechanism (tube phagocytosis) which is not observed with non-motile borreliae. Therefore, it would be of great interest to visualise the bacteria by a method not affecting motility and viability of borreliae to be able to study their interaction with the cells of the innate immunity. Carboxyfluorescein diacetate, succinimidyl ester (CFSE) labelling has been previously used for studying the adhesion of labelled bacteria to host cells and the uptake of labelled substrates by various cells using flow cytometry.
In this study, CFSE was shown to efficiently stain different genospecies of B. burgdorferi without affecting bacterial viability or motility. Use of CFSE staining allowed subsequent quantification of borreliae associated with human neutrophils with flow cytometry and confocal microscopy. As a result, no difference in association between different borrelial genospecies (Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii), or between borreliae and the pyogenic bacterium Streptococcus pyogenes, with neutrophils could be detected. Borrelial virulence, on the other hand, affected association with neutrophils, with significantly higher association of a non-virulent mutant B. burgdorferi sensu stricto strain compared to the parental virulent wild type strain.
These results suggest that the flow cytometric assay using CFSE labelled borreliae is a valuable tool in the analysis of the interaction between borreliae and human neutrophils. The results also indicate a clear difference in the association with neutrophils between virulent and non-virulent borrelial strains.
PMCID: PMC1621068  PMID: 17049082
14.  Cloning, expression and functional activity of deoxyhypusine synthase from Plasmodium vivax 
BMC Microbiology  2006;6:91.
Plasmodium vivax is the most widespread human malaria parasite. However, genetic information about its pathogenesis is limited at present, due to the lack of a reproducible in vitro cultivation method. Sequencing of the Plasmodium vivax genome suggested the presence of a homolog of deoxyhypusine synthase (DHS) from P. falciparum, the key regulatory enzyme in the first committed step of hypusine biosynthesis. DHS is involved in cell proliferation, and thus a valuable drug target for the human malaria parasite P. falciparum. A comparison of the enzymatic properties of the DHS enzymes between the benign and severe Plasmodium species should contribute to our understanding of the differences in pathogenicity and phylogeny of both malaria parasites.
We describe the cloning of a 1368 bp putative deoxyhypusine synthase gene (dhs) sequence from genomic DNA of P. vivax PEST strain Salvador I (Accession number AJ549098) after touchdown PCR. The corresponding protein was expressed and functionally characterized as deoxyhypusine synthase by determination of its specific activity and cross-reactivity to human DHS on a Western blot.
The putative DHS protein from P. vivax displays a FASTA score of 75 relative to DHS from rodent malaria parasite, P. yoelii, and 74 relative to that from the human parasite, P. falciparum strain 3D7. The ORF encoding 456 amino acids was expressed under control of IPTG-inducible T7 promoter, and expressed as a protein of approximately 50 kDa (theoretically 52.7 kDa) in E. coli BL21 DE3 cells. The N-terminal histidine-tagged protein was purified by Nickel-chelate affinity chromatography under denaturing conditions. DHS with a theoretical pI of 6.0 was present in both eluate fractions. The specific enzymatic activity of DHS was determined as 1268 U/mg protein. The inhibitor, N-guanyl-1, 7-diaminoheptane (GC7), suppressed specific activity by 36-fold. Western blot analysis performed with a polyclonal anti-human DHS antibody revealed cross-reactivity to DHS from P. vivax, despite an amino acid identity of 44% between the proteins.
We identify a novel DHS protein in the more benign malaria parasite,P. vivax, on the basis of specific enzymatic activity, cross-reactivity with a polyclonal antibody against human DHS, and amino acid identity with DHS homologs from the rodent malaria parasite, P. yoelii, and human P. falciparum strains.
PMCID: PMC1654163  PMID: 17042947
15.  Molecular characterisation of Mycobacterium tuberculosis isolates in the First National Survey of Anti-tuberculosis Drug Resistance from Venezuela 
BMC Microbiology  2006;6:90.
Molecular typing of Mycobacterium tuberculosis strains has become a valuable tool in the epidemiology of tuberculosis (TB) by allowing detection of outbreaks, tracking of epidemics, identification of genotypes and transmission events among patients who would have remained undetected by conventional contact investigation. This is the first genetic biodiversity study of M. tuberculosis in Venezuela. Thus, we investigated the genetic patterns of strains isolated in the first survey of anti-tuberculosis drug-resistance realised as part of the Global Project of Anti-tuberculosis Drug Resistance Surveillance (WHO/IUATLD).
Clinical isolates (670/873) were genotyped by spoligotyping. The results were compared with the international spoligotyping database (SpolDB4). Multidrug resistant (MDR) strains (14/18) were also analysed by IS6110-RFLP assays, and resistance to isoniazid and rifampicin was characterised.
Spoligotyping grouped 82% (548/670) of the strains into 59 clusters. Twenty new spoligotypes (SITs) specific to Venezuela were identified. Eight new inter-regional clusters were created. The Beijing genotype was not found. The genetic network shows that the Latin American and Mediterranean family constitutes the backbone of the genetic TB population-structure in Venezuela, responsible of >60% of total TB cases studied. MDR was 0.5% in never treated patients and 13.5% in previously treated patients. Mutations in rpoB gene and katG genes were detected in 64% and 43% of the MDR strains, respectively.
Two clusters were found to be identical by the four different analysis methods, presumably representing cases of recent transmission of MDR tuberculosis.
This study gives a first overview of the M. tuberculosis strains circulating in Venezuela during the first survey of anti-tuberculosis drug-resistance. It may aid in the creation of a national database that will be a valuable support for further studies.
PMCID: PMC1621067  PMID: 17032442
16.  Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12 
BMC Microbiology  2006;6:89.
In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated.
The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2). Acid also up-regulated fimbriae (fimAC), periplasmic chaperones (hdeAB), cyclopropane fatty acid synthase (cfa), and the "constitutive" Na+/H+ antiporter (nhaB). Base up-regulated core genes for maltodextrin transport (lamB, mal), ATP synthase (atp), and DNA repair (recA, mutL). Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh) and hydrogenases (hya, hyb, hyc, hyf, hyp). A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps). Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl), and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL), but down-regulated penicillin-binding proteins (dacACD, mreBC). Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC).
pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nhaB. Under oxygen limitation, however, pH regulation is reversed for genes encoding electron transport components and hydrogenases. Extreme-acid resistance requires yagU and hydrogenase production. Ribosome synthesis is down-regulated at low pH under oxygen limitation, possibly due to the restricted energy yield of catabolism. Under oxygen limitation, pH regulates metabolism and transport so as to maximize alternative catabolic options while minimizing acidification or alkalinization of the cytoplasm.
PMCID: PMC1626474  PMID: 17026754
17.  Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups 
BMC Microbiology  2006;6:88.
It is believed that animal-to-human transmission of severe acute respiratory syndrome (SARS) coronavirus (CoV) is the cause of the SARS outbreak worldwide. The spike (S) protein is one of the best characterized proteins of SARS-CoV, which plays a key role in SARS-CoV overcoming species barrier and accomplishing interspecies transmission from animals to humans, suggesting that it may be the major target of selective pressure. However, the process of adaptive evolution of S protein and the exact positively selected sites associated with this process remain unknown.
By investigating the adaptive evolution of S protein, we identified twelve amino acid sites (75, 239, 244, 311, 479, 609, 613, 743, 765, 778, 1148, and 1163) in the S protein under positive selective pressure. Based on phylogenetic tree and epidemiological investigation, SARS outbreak was divided into three epidemic groups: 02–04 interspecies, 03-early-mid, and 03-late epidemic groups in the present study. Positive selection was detected in the first two groups, which represent the course of SARS-CoV interspecies transmission and of viral adaptation to human host, respectively. In contrast, purifying selection was detected in 03-late group. These indicate that S protein experiences variable positive selective pressures before reaching stabilization. A total of 25 sites in 02–04 interspecies epidemic group and 16 sites in 03-early-mid epidemic group were identified under positive selection. The identified sites were different between these two groups except for site 239, which suggests that positively selected sites are changeable between groups. Moreover, it was showed that a larger proportion (24%) of positively selected sites was located in receptor-binding domain (RBD) than in heptad repeat (HR)1-HR2 region in 02–04 interspecies epidemic group (p = 0.0208), and a greater percentage (25%) of these sites occurred in HR1–HR2 region than in RBD in 03-early-mid epidemic group (p = 0.0721). These suggest that functionally different domains of S protein may not experience same positive selection in each epidemic group. In addition, three specific replacements (F360S, T487S and L665S) were only found between 03-human SARS-CoVs and strains from 02–04 interspecies epidemic group, which reveals that selective sweep may also force the evolution of S genes before the jump of SARS-CoVs into human hosts. Since certain residues at these positively selected sites are associated with receptor recognition and/or membrane fusion, they are likely to be the crucial residues for animal-to-human transmission of SARS-CoVs, and subsequent adaptation to human hosts.
The variation of positive selective pressures and positively selected sites are likely to contribute to the adaptive evolution of S protein from animals to humans.
PMCID: PMC1609170  PMID: 17020602
18.  New PCR systems to confirm real-time PCR detection of Mycobacterium avium subsp. paratuberculosis 
BMC Microbiology  2006;6:87.
Johne's disease, a serious chronic form of enteritis in ruminants, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). As the organism is very slow-growing and fastidious, several PCR-based methods for detection have been developed, based mainly on the MAP-specific gene IS900. However, because this gene is similar to genes in other mycobacteria, there is a need for sensitive and reliable methods to confirm the presence of MAP. As described here, two new real-time PCR systems on the IS900 gene and one on the F57 gene were developed and carefully validated on 267 strains and 56 positive clinical faecal samples.
Our confirmatory PCR systems on IS900 were found sensitive and specific, only yielding weak false positive reactions in one strain for each system. The PCR system on F57 did not elicit any false positives and was only slightly less sensitive than our primary IS900-system. DNA from both naturally infected and spiked faeces that tested positive with our primary system could be confirmed with all new systems, except one low-level infected sample that tested negative with the F57 system.
We recommend using the newly constructed DH3 PCR system on the F57 gene as the primary confirmatory test for PCR positives, but should it fail due to its lower sensitivity, the DH1 and DH2 PCR systems should be used.
PMCID: PMC1609169  PMID: 17020599
19.  Construction of a multiple fluorescence labelling system for use in co-invasion studies of Listeria monocytogenes 
BMC Microbiology  2006;6:86.
Existing virulence models are often difficult to apply for quantitative comparison of invasion potentials of Listeria monocytogenes. Well-to-well variation between cell-line based in vitro assays is practically unavoidable, and variation between individual animals is the cause of large deviations in the observed capacity for infection when animal models are used.
One way to circumvent this problem is to carry out virulence studies as competition assays between 2 or more strains. This, however, requires invasion-neutral markers that enable easy discrimination between the different strains.
A fluorescent marker system, allowing visualization and identification of single L. monocytogenes cells as well as colonies in a non-destructive manner, was developed. Five different fluorescent labels are available, and allowed simultaneous visual discrimination between three differently labelled strains at the single cell level by use of fluorescence microscopy. More than 90% of the L. monocytogenes host cells maintained the fluorescence tags for 40 generations.
The fluorescence tags did not alter the invasive capacity of the L. monocytogenes cells in a traditional Caco-2 cell invasion assay, and visual discrimination between invaded bacteria carrying different fluorescent labels inside the cells was possible.
The constructed fluorescent marker system is stable, easy to use, does not affect the virulence of L. monocytogenes in Caco-2 cell assays, and allows discrimination between differently labelled bacteria after internalization in these cells.
PMCID: PMC1599739  PMID: 17014739
20.  Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications 
BMC Microbiology  2006;6:84.
Brucella spp. are highly similar, having identical 16S RNA. However, they have important phenotypic differences such as differential susceptibility to antibiotics binding the ribosome. Neither the differential susceptibility nor its basis has been rigorously studied. Differences found among other conserved ribosomal loci could further define the relationships among the classical Brucella spp.
Minimum inhibitory concentration (MIC) values of Brucella reference strains and three marine isolates to antibiotics binding the ribosome ranged from 0.032 to >256 μg/ml for the macrolides erythromycin, clarithromycin, and azithromycin and 2 to >256 μg/ml for the lincosamide, clindamycin. Though sequence polymorphisms were identified among ribosome associated loci 23S rrn, rplV, tuf-1 and tuf-2 but not rplD, they did not correlate with antibiotic resistance phenotypes. When spontaneous erythromycin resistant (eryR) mutants were examined, mutation of the peptidyl transferase center (A2058G Ec) correlated with increased resistance to both erythromycin and clindamycin. Brucella efflux was examined as an alternative antibiotic resistance mechanism by use of the inhibitor L-phenylalanine-L-arginine β-naphthylamide (PAβN). Erythromycin MIC values of reference and all eryR strains, except the B. suis eryR mutants, were lowered variably by PAβN. A phylogenetic tree based on concatenated ribosomal associated loci supported separate evolutionary paths for B. abortus, B. melitensis, and B. suis/B. canis, clustering marine Brucella and B. neotomae with B. melitensis. Though Brucella ovis was clustered with B. abortus, the bootstrap value was low.
Polymorphisms among ribosomal loci from the reference Brucella do not correlate with their highly differential susceptibility to erythromycin. Efflux plays an important role in Brucella sensitivity to erythromycin. Polymorphisms identified among ribosome associated loci construct a robust phylogenetic tree supporting classical Brucella spp. designations.
PMCID: PMC1617103  PMID: 17014718
21.  The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells 
BMC Microbiology  2006;6:85.
Dengue viruses (DENV) attach to the host cell surface and subsequently enter the cell by receptor-mediated endocytosis. Several primary and low affinity co-receptors for this flavivirus have been identified. However, the presence of these binding molecules on the cell surface does not necessarily render the cell susceptible to infection. Determination of which of them serve as bona fide receptors for this virus in the vector may be relevant to treating DENV infection and in designing control strategies.
(1) Overlay protein binding assay showed two proteins with molecular masses of 80 and 67 kDa (R80 and R67). (2) Specific antibodies against these two proteins inhibited cell binding and infection. (3) Both proteins were bound by all four serotypes of dengue virus. (4) R80 and R67 were purified by affinity chromatography from Ae. aegypti mosquito midguts and from Ae albopictus C6/36 cells. (5) In addition, a protein with molecular mass of 57 kDa was purified by affinity chromatography from the midgut extracts. (6) R80 and R67 from radiolabeled surface membrane proteins of C6/36 cells were immunoprecipitated by antibodies against Ae. aegypti midgut.
Our results strongly suggest that R67 and R80 are receptors for the four serotypes of dengue virus in the midgut cells of Ae. aegypti and in C6/36 Ae. albopictus cells.
PMCID: PMC1599738  PMID: 17014723
22.  Evaluation of BacLite Rapid MRSA, a rapid culture based screening test for the detection of ciprofloxacin and methicillin resistant S. aureus (MRSA) from screening swabs 
BMC Microbiology  2006;6:83.
Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide. The need for accurate and rapid screening methods to detect MRSA carriers has been clearly established. The performance of a novel assay, BacLite Rapid MRSA (Acolyte Biomedica, UK) for the rapid detection (5 h) and identification of hospital associated ciprofloxacin resistant strains of MRSA directly from nasal swab specimens was compared to that obtained by culture on Mannitol salt agar containing Oxacillin (MSAO) after 48 h incubation.
A total of 1382 nasal screening swabs were tested by multiple operators. The BacLite Rapid MRSA test detected 142 out of the 157 confirmed MRSA that were detected on MSAO giving a diagnostic sensitivity of 90.4, diagnostic specificity of 95.7% and a negative predictive value of 98.7%. Of the 15 false negatives obtained by the BacLite Rapid MRSA test, seven grew small amounts (< 10 colonies of MRSA) on the MSAO culture plate and five isolates were ciprofloxacin sensitive. However there were 13 confirmed BacLite MRSA positive samples, which were negative by the direct culture method, probably due to overgrowth on the MSAO plate. There were 53 false positive results obtained by the BacLite Rapid MRSA test at 5 h and 115 cases where MRSA colonies were tentatively identified on the MSAO plate when read at 48 h, and which subsequently proved not to be MRSA.
The Baclite MRSA test is easy to use and provides a similar level of sensitivity to conventional culture for the detection of nasal carriage of MRSA with the advantage that the results are obtained much more rapidly.
PMCID: PMC1592303  PMID: 17010192
23.  Identification and characterization of the heme-binding proteins SeShp and SeHtsA of Streptococcus equi subspecies equi 
BMC Microbiology  2006;6:82.
Heme is a preferred iron source of bacterial pathogens. Streptococcus equi subspecies equi is a bacterial pathogen that causes strangles in horses. Whether S. equi has a heme acquisition transporter is unknown.
An S. equi genome database was blasted with the heme binding proteins Shp and HtsA of Streptococcus pyogenes, and found that S. equi has the homologue of Shp (designated SeShp) and HtsA (designated SeHtsA). Tag-free recombinant SeShp and SeHtsA and 6xHis-tagged SeHtsA (SeHtsAHis) were prepared and characterized. Purified holoSeShp and holoSeHtsA bind Fe(II)-protoporphyrin IX (heme) and Fe(III)-protoporphyrin IX (hemin) in a 1:1 stoichiometry, respectively, and are designated hemoSeShp and hemiSeHtsA. HemiSeShp and hemiSeHtsAHis can be reconstituted from apoSeShp and apoSeHtsAHis and hemin. HemoSeShp is stable in air and can be oxidized to hemiSeShp by ferricyanide. HemiSeHtsA can be reduced into hemoSeHtsA, which autoxidizes readily. HemoSeShp rapidly transfers its heme to apoSeHtsAHis. In addition, hemoSeShp can also transfer its heme to apoHtsA, and hemoShp is able to donate heme to apoSeHtsAHis.
The primary structures, optical properties, oxidative stability, and in vitro heme transfer reaction of SeShp and SeHtsA are very similar to those of S. pyogenes Shp and HtsA. The data suggest that the putative cell surface protein SeShp and lipoprotein SeHtsA are part of the machinery to acquire heme in S. equi. The results also imply that the structure, function, and functional mechanism of the heme acquisition machinery are conserved in S. equi and S. pyogenes.
PMCID: PMC1592302  PMID: 17007644
24.  Human inflammatory bowel disease does not associate with Lawsonia intracellularis infection 
BMC Microbiology  2006;6:81.
There is increasing evidence that bacterial infection of the intestinal mucosa may contribute to the pathogenesis of inflammatory bowel diseases (IBD). In pigs, an obligate intracellular bacterium, Lawsonia intracellularis (LI), was shown to cause proliferative enteropathy (PE) of which some forms display histological and clinical similarities to human IBD. Since LI-similar Desulfovibrio spp. may infect human cells, we hypothesized that LI might be associated with the development of human IBD.
In human intestinal tissue samples, PCR using LLG, 50SL27, LSA and strictly LI-specific 16SII primers, yielded either no amplicons or products with weak homology to human genomic sequences. Sequencing of these amplicons revealed no specificity for LI. However, amplification of DNA with less specific 16SI primers resulted in products bearing homology to certain Streptococcus species. These 16SI-amplified products were present in healthy and diseased specimens, without obvious prevalence.
LI is not associated with the pathogenesis of UC or CD. Whether an immunologic response to commensal bacteria such as streptococci may contribute to the chronic inflammatory condition in IBD, remained to be determined.
PMCID: PMC1590022  PMID: 16984651
25.  Population-associated differences between the phase variable LPS biosynthetic genes of Helicobacter pylori 
BMC Microbiology  2006;6:79.
Population structures are normally determined using genes under minimal functional selection. In this study we have assessed genes that are not always essential, show differences in alleles between strains, and are involved in the directly host-selectable phenotype of LPS biosynthesis.
Eight complete LPS biosynthesis genes, seven of which are associated with phase variation in some or all strains of Helicobacter pylori, have been sequenced and their divergence analyzed. The differences observed indicate that recombination within these genes largely reflects exchange between strains within the population lineages previously determined on the basis of MLST using housekeeping genes. This indicates that the differences that are used for MLST are likely to broadly associate with genes under functional selection, and differences in strain behaviour. However, instances of exchange between the subpopulations were identified, including the hpAfrica2 subpopulation. Further, there were other differences in gene complements and the chromosomal location of genes indicative of greater diversity within the population than is revealed by the available genome sequences and comparative genome hybridization studies.
These results indicate that the described population structure based upon MLST is broadly a good basis for studying the biology of H. pylori, but that individual alleles may not follow these associations. As a consequence, when working in unsequenced strains, it is necessary to carefully check the presence, sequence, and distribution of any individual gene of interest.
PMCID: PMC1599737  PMID: 16981984

Results 1-25 (104)