Search tips
Search criteria

Results 1-25 (289)

Clipboard (0)
Year of Publication
1.  Multilocus variable-number tandem repeat analysis for molecular typing and phylogenetic analysis of Shigella flexneri 
BMC Microbiology  2009;9:278.
Shigella flexneri is one of the causative agents of shigellosis, a major cause of childhood mortality in developing countries. Multilocus variable-number tandem repeat (VNTR) analysis (MLVA) is a prominent subtyping method to resolve closely related bacterial isolates for investigation of disease outbreaks and provide information for establishing phylogenetic patterns among isolates. The present study aimed to develop an MLVA method for S. flexneri and the VNTR loci identified were tested on 242 S. flexneri isolates to evaluate their variability in various serotypes. The isolates were also analyzed by pulsed-field gel electrophoresis (PFGE) to compare the discriminatory power and to evaluate the usefulness of MLVA as a tool for phylogenetic analysis of S. flexneri.
Thirty-six VNTR loci were identified by exploring the repeat sequence loci in genomic sequences of Shigella species and by testing the loci on nine isolates of different subserotypes. The VNTR loci in different serotype groups differed greatly in their variability. The discriminatory power of an MLVA assay based on four most variable VNTR loci was higher, though not significantly, than PFGE for the total isolates, a panel of 2a isolates, which were relatively diverse, and a panel of 4a/Y isolates, which were closely-related. Phylogenetic groupings based on PFGE patterns and MLVA profiles were considerably concordant. The genetic relationships among the isolates were correlated with serotypes. The phylogenetic trees constructed using PFGE patterns and MLVA profiles presented two distinct clusters for the isolates of serotype 3 and one distinct cluster for each of the serotype groups, 1a/1b/NT, 2a/2b/X/NT, 4a/Y, and 6. Isolates that had different serotypes but had closer genetic relatedness than those with the same serotype were observed between serotype Y and subserotype 4a, serotype X and subserotype 2b, subserotype 1a and 1b, and subserotype 3a and 3b.
The 36 VNTR loci identified exhibited considerably different degrees of variability among S. flexneri serotype groups. VNTR locus could be highly variable in a serotype but invariable in others. MLVA assay based on four highly variable loci could display a comparable resolving power to PFGE in discriminating isolates. MLVA is also a prominent molecular tool for phylogenetic analysis of S. flexneri; the resulting data are beneficial to establish clear clonal patterns among different serotype groups and to discern clonal groups among isolates within the same serotype. As highly variable VNTR loci could be serotype-specific, a common MLVA protocol that consists of only a small set of loci, for example four to eight loci, and that provides high resolving power to all S. flexneri serotypes may not be obtainable.
PMCID: PMC2806262  PMID: 20042119
2.  The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness 
BMC Microbiology  2009;9:279.
rRNA adenine dimethyltransferases, represented by the Escherichia coli KsgA protein, are highly conserved phylogenetically and are generally not essential for growth. They are responsible for the post-transcriptional transfer of two methyl groups to two universally conserved adenosines located near the 3'end of the small subunit rRNA and participate in ribosome maturation. All sequenced genomes of Chlamydia reveal a ksgA homolog in each species, including C. trachomatis. Yet absence of a S-adenosyl-methionine synthetase in Chlamydia, the conserved enzyme involved in the synthesis of the methyl donor S-adenosyl-L-methionine, raises a doubt concerning the activity of the KsgA homolog in these organisms.
Lack of the dimethylated adenosines following ksgA inactivation confers resistance to kasugamycin (KSM) in E. coli. Expression of the C. trachomatis L2 KsgA ortholog restored KSM sensitivity to the E. coli ksgA mutant, suggesting that the chlamydial KsgA homolog has specific rRNA dimethylase activity. C. trachomatis growth was sensitive to KSM and we were able to isolate a KSM resistant mutant of C. trachomatis containing a frameshift mutation in ksgA, which led to the formation of a shorter protein with no activity. Growth of the C. trachomatis ksgA mutant was negatively affected in cell culture highlighting the importance of the methylase in the development of these obligate intracellular and as yet genetically intractable pathogens.
The presence of a functional rRNA dimethylase enzyme belonging to the KsgA family in Chlamydia presents an excellent chemotherapeutic target with real potential. It also confirms the existence of S-adenosyl-methionine - dependent methylation reactions in Chlamydia raising the question of how these organisms acquire this cofactor.
PMCID: PMC2807437  PMID: 20043826
3.  Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species 
BMC Microbiology  2009;9:281.
Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few Fusarium species. However recently a putative fumonisin gene cluster was discovered in two different Aspergillus niger strains followed by detection of an actual fumonisin B2 (FB2) production in four strains of this biotechnologically important workhorse.
In the present study, a screening of 5 A. niger strains and 25 assumed fumonisin producing Fusarium strains from 6 species, showed that all 5 A. niger strains produced FB2 and 23 of 25 Fusarium produced fumonisin B1 and other isoforms (fumonisin B2 and B3). Five A. niger and five Fusarium spp. were incubated at six different temperatures from 15-42°C on Czapek Yeast Agar +5% salt or Potato Dextrose Agar. A. niger had the highest production of FB2 at 25-30°C whereas Fusarium spp. had the maximal production of FB1 and FB2 at 20-25°C. Addition of 2.5-5% NaCl, or 10-20% sucrose increased the FB2 production of A. niger, whereas addition of glycerol reduced FB2 production. All three water activity lowering solutes reduced the fumonisin production of the Fusarium species.
The present study shows that the regulation of fumonisin production is very different in A. niger and Fusarium, and that food and feeds preserved by addition of sugar or salts may be good substrates for fumonisin B2 production by A. niger.
PMCID: PMC2811119  PMID: 20043849
4.  In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells 
BMC Microbiology  2009;9:280.
Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria.
We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes.
We developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases.
PMCID: PMC2818713  PMID: 20043840
5.  Polymorphism in the flanking regions of the PbGP43 gene from the human pathogen Paracoccidioides brasiliensis: search for protein binding sequences and poly(A) cleavage sites 
BMC Microbiology  2009;9:277.
Paracoccidioides brasiliensis is a thermo-dimorphic fungus that causes paracoccidiodomycosis (PCM). Glycoprotein gp43 is the fungal main diagnostic antigen, which can also protect against murine PCM and interact with extracellular matrix proteins. It is structurally related to glucanases, however not active, and whose expression varies considerably. We have presently studied polymorphisms in the PbGP43 flanking regions to help understand such variations.
we tested the protein-binding capacity of oligonucleotides covering the PbGP43 proximal 5' flanking region, including overlap and mutated probes. We used electrophoretic mobility shift assays and found DNA binding regions between positions -134 to -103 and -255 to -215. Only mutation at -230, characteristic of P. brasiliensis phylogenetic species PS2, altered binding affinity. Next, we cloned and sequenced the 5' intergenic region up to position -2,047 from P. brasiliensis Pb339 and observed that it is composed of three tandem repetitive regions of about 500 bp preceded upstream by 442 bp. Correspondent PCR fragments of about 2,000 bp were found in eight out of fourteen isolates; in PS2 samples they were 1,500-bp long due to the absence of one repetitive region, as detected in Pb3. We also compared fifty-six PbGP43 3' UTR sequences from ten isolates and have not observed polymorphisms; however we detected two main poly(A) clusters (1,420 to 1,441 and 1,451 to 1,457) of multiple cleavage sites. In a single isolate we found one to seven sites.
We observed that the amount of PbGP43 transcripts accumulated in P. brasiliensis Pb339 grown in defined medium was about 1,000-fold higher than in Pb18 and 120-fold higher than in Pb3. We have described a series of features in the gene flanking regions and differences among isolates, including DNA-binding sequences, which might impact gene regulation. Little is known about regulatory sequences in thermo-dimorphic fungi. The peculiar structure of tandem repetitive fragments in the 5' intergenic region of PbGP43, their characteristic sequences, besides the presence of multiple poly(A) cleavage sites in the 3' UTR will certainly guide future studies.
PMCID: PMC2809070  PMID: 20042084
6.  aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species 
BMC Microbiology  2009;9:273.
Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene.
We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence.
Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.
PMCID: PMC2805673  PMID: 20040078
7.  Molecular characterisation of Vibrio cholerae O1 strains carrying an SXT/R391-like element from cholera outbreaks in Kenya: 1994-2007 
BMC Microbiology  2009;9:275.
Over the last decade, cholera outbreaks in parts of Kenya have become common. Although a number of recent studies describe the epidemiology of cholera in Kenya, there is paucity of information concerning the diversity and occurrence of mobile genetic elements in Vibrio cholerae strains implicated in these outbreaks. A total of 65 Vibrio cholerae O1 El Tor serotype Inaba isolated between 1994 and 2007 from various outbreaks in Kenya were investigated for mobile genetic elements including integrons, transposons, the integrating conjugative elements (ICEs), conjugative plasmids and for their genotypic relatedness.
All the strains were haemolytic on 5% sheep blood and positive for the Vibrio cholerae El Tor-specific haemolysin toxin gene (hylA) by PCR. They all contained strB, sulII, floR and the dfrA1 genes encoding resistance to streptomycin, sulfamethoxazole, chloramphenicol and trimethoprim respectively. These genes, together with an ICE belonging to the SXT/R391 family were transferable to the rifampicin-resistant E. coli C600 en bloc. All the strains were negative for integron class 1, 2 and 3 and for transposase gene of transposon Tn7 but were positive for integron class 4 and the trpM gene of transposon Tn21. No plasmids were isolated from any of the 65 strains. All the strains were also positive for all V. cholera El Tor pathogenic genes except the NAG- specific heat-stable toxin (st) gene. None of the strains were positive for virulence genes associated with the V. cholerae classical biotype. All the strains were positive for El Tor-specific CTXphi bacteriophage rstrR repressor gene (CTXETΦ) but negative for the Classical, Calcutta, and the Environmental repressor types. Pulse Field Gel Electrophoresis (PFGE) showed that regardless of the year of isolation, all the strains bearing the SXT element were clonally related.
This study demonstrates that the V. cholerae O1 strains carrying an SXT/R391-like element implicated in recent cholera outbreaks in Kenya has not changed significantly between 1994 and 2007 and are clonally related.
PMCID: PMC2806261  PMID: 20040104
8.  Production and characterization of recombinant pertactin, fimbriae 2 and fimbriae 3 from Bordetella pertussis 
BMC Microbiology  2009;9:274.
Bordetella pertussis is a causative agent of pertussis or whooping cough in humans. Pertactin (Prn), fimbriae 2 (Fim2) and fimbriae 3 (Fim3) of B. pertussis are important virulence factors and immunogens which have been included in some acellular pertussis vaccines. In this present study, we cloned, expressed and purified Prn, Fim2 and Fim3, respectively. The immunogenicity and protective efficacy of the three recombinant proteins (rPrn, rFim2 and rFim3) were investigated in mouse model.
Three recombinant proteins with amount of 12 to 25 mg/L were produced. Compared to the control mice only immunized with adjuvant, serum IgG antibody responses were significantly induced in the mice immunized with rPrn, rFim2 or rFim3 (P < 0.001 for all three proteins). Furthermore, T cell responses characteristic of increased production of IL-2 and TNF-α (only for rPrn) were elicited in the mice immunized with the three proteins (P < 0.05 for all three proteins). Immunization with rPrn, but not with rFim2 or rFim3, significantly enhanced clearance of bacteria in the lungs of mice after intranasal challenge with B. pertussis (P < 0.05). When tested in a lethal intracerebral infection model, certain protection was observed in mice immunized with rPrn.
We have developed an efficient method to produce large amounts of rPrn, rFim2, and rFim3 from B. pertussis. The three recombinant proteins induced both humoral and cellular immune responses in mice. Immunization with rPrn also conferred protection against pertussis in mouse infection models. Our results indicated that the recombinant proteins still retain their immunological properties and highlighted the potential of the recombinant proteins for the future development of the B. pertussis vaccines.
PMCID: PMC2807877  PMID: 20040101
9.  Temporal and spatial patterns of bovine Escherichia coli O157 prevalence and comparison of temporal changes in the patterns of phage types associated with bovine shedding and human E. coli O157 cases in Scotland between 1998-2000 and 2002-2004 
BMC Microbiology  2009;9:276.
Escherichia coli O157 is an important cause of acute diarrhoea, haemorrhagic colitis and, especially in children, haemolytic uraemic syndrome (HUS). Incidence rates for human E. coli O157 infection in Scotland are higher than most other United Kingdom, European and North American countries. Cattle are considered the main reservoir for E. coli O157. Significant associations between livestock related exposures and human infection have been identified in a number of studies.
Animal Studies: There were no statistically significant differences (P = 0.831) in the mean farm-level prevalence between the two studies (SEERAD: 0.218 (95%CI: 0.141-0.32); IPRAVE: 0.205 (95%CI: 0.135-0.296)). However, the mean pat-level prevalence decreased from 0.089 (95%CI: 0.075-0.105) to 0.040 (95%CI: 0.028-0.053) between the SEERAD and IPRAVE studies respectively (P < 0.001). Highly significant (P < 0.001) reductions in mean pat-level prevalence were also observed in the spring, in the North East and Central Scotland, and in the shedding of phage type (PT) 21/28. Human Cases: Contrasting the same time periods, there was a decline in the overall comparative annual reported incidence of human cases as well as in all the major PT groups except 'Other' PTs. For both cattle and humans, the predominant phage type between 1998 and 2004 was PT21/28 comprising over 50% of the positive cattle isolates and reported human cases respectively. The proportion of PT32, however, was represented by few (<5%) of reported human cases despite comprising over 10% of cattle isolates. Across the two studies there were differences in the proportion of PTs 21/28, 32 and 'Other' PTs in both cattle isolates and reported human cases; however, only differences in the cattle isolates were statistically significant (P = 0.002).
There was no significant decrease in the mean farm-level prevalence of E. coli O157 between 1998 and 2004 in Scotland, despite significant declines in mean pat-level prevalence. Although there were declines in the number of human cases between the two study periods, there is no statistically significant evidence that the overall rate (per 100,000 population) of human E. coli O157 infections in Scotland over the last 10 years has altered. Comparable patterns in the distribution of PTs 21/28 and 32 between cattle and humans support a hypothesized link between the bovine reservoir and human infections. This emphasizes the need to apply and improve methods to reduce bovine shedding of E. coli O157 in Scotland where rates appear higher in both cattle and human populations, than in other countries.
PMCID: PMC2808314  PMID: 20040112
10.  The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as an anchorless adhesin 
BMC Microbiology  2009;9:272.
The pathogenic fungus Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis (PCM). This is a pulmonary mycosis acquired by inhalation of fungal airborne propagules that can disseminate to several organs and tissues leading to a severe form of the disease. Adhesion and invasion to host cells are essential steps involved in the internalization and dissemination of pathogens. Inside the host, P. brasiliensis may use the glyoxylate cycle for intracellular survival.
Here, we provide evidence that the malate synthase of P. brasiliensis (PbMLS) is located on the fungal cell surface, and is secreted. PbMLS was overexpressed in Escherichia coli, and polyclonal antibody was obtained against this protein. By using Confocal Laser Scanning Microscopy, PbMLS was detected in the cytoplasm and in the cell wall of the mother, but mainly of budding cells of the P. brasiliensis yeast phase. PbMLSr and its respective polyclonal antibody produced against this protein inhibited the interaction of P. brasiliensis with in vitro cultured epithelial cells A549.
These observations indicated that cell wall-associated PbMLS could be mediating the binding of fungal cells to the host, thus contributing to the adhesion of fungus to host tissues and to the dissemination of infection, behaving as an anchorless adhesin.
PMCID: PMC2807876  PMID: 20034376
11.  Downregulation of protein kinase C-α enhances intracellular survival of Mycobacteria: role of PknG 
BMC Microbiology  2009;9:271.
Intracellular trafficking of mycobacteria is comprehensively dependent on the unusual regulation of host proteins. Recently, we have reported that infection of macrophages by Mycobacterium tuberculosis H37Rv (Rv) selectively downregulates the expression of PKCα while infection by Mycobacterium smegmatis (MS) does not.
Based on our earlier study, we have extrapolated for the first time that knockdown of PKCα, impairs phagocytosis of mycobacteria by macrophages while their intracellular survival is drastically increased. Mycobacterium bovis BCG (BCG) and Mycobacterium tuberculosis H37Ra (Ra) have also been shown to downregulate the expression of PKCα during the infection. Since PknG is uniquely expressed in BCG, Ra, Rv but not in MS and has been reported to promote intracellular survival of mycobacteria, led us to believe that PknG may be involved in such downregulation of PKCα. THP-1 cells infected with recombinant MS expressing PknG (MS-G), showed significant reduction in PKCα expression. In normal THP-1 cells survival of MS-G was enhanced as compared to MS, while their behavior in PKCα deficient cells could not be distinguished. The results strongly demonstrate that pathogenic mycobacteria recognize and then inhibit PKCα to circumvent phagocytosis and the hostile environment of macrophages. We emphasize that, this inhibition is controlled by PknG.
All together, our data reveal a mechanism that shows substantial interdependence of PKCα with PknG, in sustaining mycobacterial infection.
PMCID: PMC2816201  PMID: 20030858
12.  Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii 
BMC Microbiology  2009;9:270.
Acinetobacter baumannii is emerging as an important nosocomial pathogen. Multidrug resistance, as well as ability to withstand environmental stresses, makes eradication of A. baumannii difficult, particularly from hospital settings.
Over a six-year period, 73 isolates of A. baumannii were collected from infected patients in two hospitals in Italy. While 69 out of the 73 isolates displayed identical multidrug antibiotic resistance pattern, they were susceptible to carbapenems. Genetic profiles of these 69 isolates, determined by Pulsed Field Gel Electrophoresis (PFGE), indicated that they were genetically related and could be clustered in a specific clone, called SMAL. We tested the ability of the SMAL clone to form biofilm, an important determinant for bacterial colonization of the human host and for persistence in the hospital environment. Biofilm formation by A. baumannii SMAL, measured as surface adhesion to polystyrene, is strongly affected by growth conditions, being impaired in rich growth media such as LB, while being favoured in glucose-based medium. Surface adhesion in glucose-based media is inhibited by treatment with cellulase, suggesting that it depends on production of cellulose or of a chemically related extracellular polysaccharide. Exposure of A. baumannii SMAL to subinhibitory concentrations of imipenem resulted in biofilm stimulation and increased production of iron uptake proteins. Growth in iron-supplemented medium also stimulated surface adhesion, thus suggesting that increased intracellular iron concentrations might act as an environmental signal for biofilm formation in A. baumannii SMAL.
Our results indicate that exposure to subinhibitory concentrations of imipenem can stimulate biofilm formation and induce iron uptake in a pathogenic strain of A. baumannii, with potential implications on antibiotic susceptibility and ability to persist in the human host.
PMCID: PMC2804601  PMID: 20028528
13.  The commonly-used DNA probe for diffusely-adherent Escherichia coli cross-reacts with a subset of enteroaggregative E. coli 
BMC Microbiology  2009;9:269.
The roles of diffusely-adherent Escherichia coli (DAEC) and enteroaggregative E. coli (EAEC) in disease are not well understood, in part because of the limitations of diagnostic tests for each of these categories of diarrhoea-causing E. coli. A HEp-2 adherence assay is the Gold Standard for detecting both EAEC and DAEC but DNA probes with limited sensitivity are also employed.
We demonstrate that the daaC probe, conventionally used to detect DAEC, cross-reacts with a subset of strains belonging to the EAEC category. The cross hybridization is due to 84% identity, at the nucleotide level, between the daaC locus and the aggregative adherence fimbriae II cluster gene, aafC, present in some EAEC strains. Because aaf-positive EAEC show a better association with diarrhoea than other EAEC, this specific cross-hybridization may have contributed to an over-estimation of the association of daaC with disease in some studies. We have developed a discriminatory PCR-RFLP protocol to delineate EAEC strains detected by the daaC probe in molecular epidemiological studies.
A PCR-RFLP protocol described herein can be used to identify aaf-positive EAEC and daaC-positive DAEC and to delineate these two types of diarrhoeagenic E. coli, which both react with the daaC probe. This should help to improve current understanding and future investigations of DAEC and EAEC epidemiology.
PMCID: PMC2803494  PMID: 20025771
14.  Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens 
BMC Microbiology  2009;9:268.
Salmonella is a highly successful parasite of reptiles, birds and mammals. Its ability to infect and colonise such a broad range of hosts coincided with the introduction of new genetic determinants, among them 5 major pathogenicity islands (SPI1-5), into the Salmonella genome. However, only limited information is available on how each of these pathogenicity islands influences the ability of Salmonella to infect chickens. In this study, we therefore constructed Salmonella Enteritidis mutants with each SPI deleted separately, with single individual SPIs (i.e. with the remaining four deleted) and a mutant with all 5 SPIs deleted, and assessed their virulence in one-day-old chickens, together with the innate immune response of this host.
The mutant lacking all 5 major SPIs was still capable of colonising the caecum while colonisation of the liver and spleen was dependent on the presence of both SPI-1 and SPI-2. In contrast, the absence of SPI-3, SPI-4 or SPI-5 individually did not influence virulence of S. Enteritidis for chickens, but collectively they contributed to the colonisation of the spleen. Proinflammatory signalling and heterophil infiltration was dependent on intact SPI-1 only and not on other SPIs.
SPI-1 and SPI-2 are the two most important pathogenicity islands of Salmonella Enteritidis required for the colonisation of systemic sites in chickens.
PMCID: PMC2803193  PMID: 20021686
15.  Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation 
BMC Microbiology  2009;9:267.
Ochrobactrum anthropi is a versatile bacterial species with strains living in very diverse habitats. It is increasingly recognized as opportunistic pathogen in hospitalized patients. The population biology of the species particularly with regard to the characteristics of the human isolates is being investigated. To address this issue, we proposed a polyphasic approach consisting in Multi-Locus Sequence Typing (MLST), multi-locus phylogeny, genomic-based fingerprinting by pulsed-field gel electrophoresis (PFGE) and antibiotyping.
We tested a population of 70 O. anthropi clinical (n = 43) and environmental (n = 24) isolates as well as the type strain O. anthropi ATCC49188T and 2 strains of Ochrobactrum lupini and Ochrobactrum cytisi isolated from plant nodules. A Multi-Locus Sequence Typing (MLST) scheme for O. anthropi is proposed here for the first time. It was based on 7 genes (3490 nucleotides) evolving mostly by neutral mutations. The MLST approach suggested an epidemic population structure. A major clonal complex corresponded to a human-associated lineage since it exclusively contained clinical isolates. Genomic fingerprinting separated isolates displaying the same sequence type but it did not detect a population structure that could be related to the origin of the strains. None of the molecular method allowed the definition of particular lineages associated to the host-bacteria relationship (carriage, colonisation or infection). Antibiotyping was the least discriminative method.
The results reveal a human-associated subpopulation in our collection of strains. The emergence of this clonal complex was probably not driven by the antibiotic selective pressure. Therefore, we hypothesise that the versatile species O. anthropi could be considered as a human-specialized opportunistic pathogen.
PMCID: PMC2810298  PMID: 20021660
16.  YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability 
BMC Microbiology  2009;9:266.
Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function.
Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP) of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus.
In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.
PMCID: PMC2811118  PMID: 20021644
17.  Genetic tools for the investigation of Roseobacter clade bacteria 
BMC Microbiology  2009;9:265.
The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools.
Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T.
A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria.
PMCID: PMC2811117  PMID: 20021642
18.  Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids 
BMC Microbiology  2009;9:263.
Rhamnolipids are surface active molecules composed of rhamnose and β-hydroxydecanoic acid. These biosurfactants are produced mainly by Pseudomonas aeruginosa and have been thoroughly investigated since their early discovery. Recently, they have attracted renewed attention because of their involvement in various multicellular behaviors. Despite this high interest, only very few studies have focused on the production of rhamnolipids by Burkholderia species.
Orthologs of rhlA, rhlB and rhlC, which are responsible for the biosynthesis of rhamnolipids in P. aeruginosa, have been found in the non-infectious Burkholderia thailandensis, as well as in the genetically similar important pathogen B. pseudomallei. In contrast to P. aeruginosa, both Burkholderia species contain these three genes necessary for rhamnolipid production within a single gene cluster. Furthermore, two identical, paralogous copies of this gene cluster are found on the second chromosome of these bacteria. Both Burkholderia spp. produce rhamnolipids containing 3-hydroxy fatty acid moieties with longer side chains than those described for P. aeruginosa. Additionally, the rhamnolipids produced by B. thailandensis contain a much larger proportion of dirhamnolipids versus monorhamnolipids when compared to P. aeruginosa. The rhamnolipids produced by B. thailandensis reduce the surface tension of water to 42 mN/m while displaying a critical micelle concentration value of 225 mg/L. Separate mutations in both rhlA alleles, which are responsible for the synthesis of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxy)alkanoic acid, prove that both copies of the rhl gene cluster are functional, but one contributes more to the total production than the other. Finally, a double ΔrhlA mutant that is completely devoid of rhamnolipid production is incapable of swarming motility, showing that both gene clusters contribute to this phenotype.
Collectively, these results add another Burkholderia species to the list of bacteria able to produce rhamnolipids and this, by the means of two identical functional gene clusters. Our results also demonstrate the very impressive tensio-active properties these long-chain rhamnolipids possess in comparison to the well-studied short-chain ones from P. aeruginosa.
PMCID: PMC2804600  PMID: 20017946
19.  Clonal dissemination of the multi-drug resistant Salmonella enterica serovar Braenderup, but not the serovar Bareilly, of prevalent serogroup C1 Salmonella from Taiwan 
BMC Microbiology  2009;9:264.
Nontyphoidal Salmonella is the main cause of human salmonellosis. In order to study the prevalent serogroups and serovars of clinical isolates in Taiwan, 8931 Salmonellae isolates were collected from 19 medical centers and district hospitals throughout the country from 2004 to 2007. The pulsed-field eletrophoresis types (PFGE) and antibiotic resistance profiles of Salmonella enterica serovars Bareilly (S. Bareilly) and Braenderup (S. Braenderup) were compared, and multi-drug resistance (MDR) plasmids were characterized.
Over 95% of human salmonellosis in Taiwan was caused by five Salmonella serogroups: B, C1, C2-C3, D1, and E1. S. Typhymurium, S. Enteritidis, S. Stanley and S. Newport were the four most prevalent serovars, accounting for about 64% of isolates. While only one or two major serovars from four of the most prevalent serogroups were represented, four predominant serovars were found in serogroup C1 Salmonellae. The prevalence was decreasing for S. Choleraeuis and S. Braenderup, and S. Virchow and increasing for S. Bareilly. S. Braenderup mainly caused gastroenteritis in children; in contrast, S. Bareiley infected children and elderly people. Both serovars differed by XbaI-PFGE patterns. Almost all S. Bareilly isolates were susceptible to antibiotics of interest, while all lacked plasmids and belonged to one clone. Two distinct major clones in S. Braenderup were cluster A, mainly including MDR isolates with large MDR plasmid from North Taiwan, and cluster B, mainly containing susceptible isolates without R plasmid from South Taiwan. In cluster A, there were two types of conjugative R plasmids with sizes ranging from 75 to 130 kb. Type 1 plasmids consisted of replicons F1A/F1B, blaTEM, IS26, and a class 1 integron with the genes dfrA12-orfF-aadA2-qacEΔ1-sulI. Type 2 plasmids belonged to incompatibility group IncI, contained tnpA-blaCMY-2-blc-sugE genetic structures and lacked both IS26 and class 1 integrons. Although type 2 plasmids showed higher conjugation capability, type 1 plasmids were the predominant plasmid.
Serogroups B, C1, C2-C3, D1, and E1 of Salmonella caused over 95% of human salmonellosis. Two prevalent serovars within serogroup C1, S. Bareilly and cluster B of S. Braenderup, were clonal and drug-susceptible. However, cluster A of S. Braenderup was MDR and probably derived from susceptible isolates by acquiring one of two distinct conjugative R plasmids.
PMCID: PMC2806260  PMID: 20017951
20.  Molecular and biochemical characterization of urease and survival of Yersinia enterocolitica biovar 1A in acidic pH in vitro 
BMC Microbiology  2009;9:262.
Yersinia enterocolitica, an important food- and water-borne enteric pathogen is represented by six biovars viz. 1A, 1B, 2, 3, 4 and 5. Despite the lack of recognized virulence determinants, some biovar 1A strains have been reported to produce disease symptoms resembling that produced by known pathogenic biovars (1B, 2-5). It is therefore imperative to identify determinants that might contribute to the pathogenicity of Y. enterocolitica biovar 1A strains. Y. enterocolitica invariably produces urease and the role of this enzyme in the virulence of biovar 1B and biovar 4 strains has been reported recently. The objective of this work was to study genetic organization of the urease (ure) gene complex of Y. enterocolitica biovar 1A, biochemical characterization of the urease, and the survival of these strains under acidic conditions in vitro.
The ure gene complex (ureABCEFGD) of Y. enterocolitica biovar 1A included three structural and four accessory genes, which were contiguous and was flanked by a urea transport (yut) gene on the 3' side. Differences were identified in ure gene complex of biovar 1A strain compared to biovar 1B and 4 strains. This included a smaller ureB gene and larger intergenic regions between the structural genes. The crude urease preparation exhibited optimal pH and temperature of 5.5 and 65°C respectively, and Michaelis-Menten kinetics with a Km of 1.7 ± 0.4 mM urea and Vmax of 7.29 ± 0.42 μmol of ammonia released/min/mg protein. The urease activity was dependent on growth temperature and growth phase of Y. enterocolitica biovar 1A, and the presence of nickel in the medium. The molecular mass of the enzyme was > 545 kDa and an isoelectric point of 5.2. The number of viable Y. enterocolitica biovar 1A decreased significantly when incubated at pH 2.5 for 2 h. However, no such decrease was observed at this pH in the presence of urea.
The ure gene cluster of biovar 1A strains though similar to biovar 1B and 4 strains, exhibited important differences. The study also showed the ability of biovar 1A strains of Y. enterocolitica to survive at highly acidic pH in vitro in the presence of urea.
PMCID: PMC2806259  PMID: 20017936
21.  The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA 
BMC Microbiology  2009;9:261.
Serratia marcescens is a gram-negative bacterium and often causes nosocomial infections. There have been few studies of the virulence factors of this bacterium. The only S. marcescens hemolytic and cytotoxic factor reported, thus far, is the hemolysin ShlA.
An S. marcescens shlAB deletion mutant was constructed and shown to have no contact hemolytic activity. However, the deletion mutant retained hemolytic activity on human blood agar plates, indicating the presence of another S. marcescens hemolytic factor. Functional cloning of S. marcescens identified a phospholipase A (PhlA) with hemolytic activity on human blood agar plates. A phlAB deletion mutant lost hemolytic activity on human blood agar plates. Purified recombinant PhlA hydrolyzed several types of phospholipids and exhibited phospholipase A1 (PLA1), but not phospholipase A2 (PLA2), activity. The cytotoxic and hemolytic activities of PhlA both required phospholipids as substrates.
We have shown that the S. marcescens phlA gene produces hemolysis on human blood agar plates. PhlA induces destabilization of target cell membranes in the presence of phospholipids. Our results indicated that the lysophospholipids produced by PhlA affected cell membranes resulting in hemolysis and cell death.
PMCID: PMC2800117  PMID: 20003541
22.  Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico 
BMC Microbiology  2009;9:260.
Dengue (DEN) is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV) that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating.
To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91)-prM-E-NS1(2400) structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype.
This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for the vaccines and drugs formulation as occurs for other viruses like poliovirus, influenza and HIV.
PMCID: PMC2804599  PMID: 20003526
23.  Defining the healthy "core microbiome" of oral microbial communities 
BMC Microbiology  2009;9:259.
Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing).
We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium).
Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth).
There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa.
We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health.
PMCID: PMC2805672  PMID: 20003481
24.  Transcriptional profile of Pseudomonas syringae pv. phaseolicola NPS3121 in response to tissue extracts from a susceptible Phaseolus vulgaris L. cultivar 
BMC Microbiology  2009;9:257.
Pseudomonas syringae pv. phaseolicola is a Gram-negative plant-pathogenic bacterium that causes "halo blight" disease of beans (Phaseolus vulgaris L.). This disease affects both foliage and pods, and is a major problem in temperate areas of the world. Although several bacterial genes have been determined as participants in pathogenesis, the overall process still remains poorly understood, mainly because the identity and function of many of the genes are largely unknown. In this work, a genomic library of P. syringae pv. phaseolicola NPS3121 was constructed and PCR amplification of individual fragments was carried out in order to print a DNA microarray. This microarray was used to identify genes that are differentially expressed when bean leaf extracts, pod extracts or apoplastic fluid were added to the growth medium.
Transcription profiles show that 224 genes were differentially expressed, the majority under the effect of bean leaf extract and apoplastic fluid. Some of the induced genes were previously known to be involved in the first stages of the bacterial-plant interaction and virulence. These include genes encoding type III secretion system proteins and genes involved in cell-wall degradation, phaseolotoxin synthesis and aerobic metabolism. On the other hand, most repressed genes were found to be involved in the uptake and metabolism of iron.
This study furthers the understanding of the mechanisms involved, responses and the metabolic adaptation that occurs during the interaction of P. syringae pv. phaseolicola with a susceptible host plant.
PMCID: PMC2803797  PMID: 20003402
25.  Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent 
BMC Microbiology  2009;9:258.
Helicobacter pylori specifically takes up cholesterol and incorporates it into the bacterial membrane, yet little is currently known about cholesterol's physiological roles. We compared phenotypes and in vivo colonization ability of H. pylori grown in a defined, serum-free growth medium, F12 with 1 mg/ml albumin containing 0 to 50 μg/ml cholesterol.
While doubling times were largely unaffected by cholesterol, other overt phenotypic changes were observed. H. pylori strain SS1 grown in defined medium with cholesterol successfully colonized the stomach of gerbils, whereas SS1 grown without cholesterol failed to colonize. H. pylori lipopolysaccharide often displays Lewis X and/or Y antigens. Expression of these antigens measured by whole-cell ELISA was markedly enhanced in response to growth of strain SS1, 26695, or G27 in cholesterol. In addition, electrophoretic analysis of lipopolysaccharide in wild type G27 and in mutants lacking the O-chain revealed structural changes within the oligosaccharide core/lipid A moieties. These responses in Lewis antigen levels and in lipopolysaccharide profiles to cholesterol availability were highly specific, because no changes took place when cholesterol was substituted by β-sitosterol or bile salts. Disruption of the genes encoding cholesterol α-glucosyltransferase or lipid A phosphoethanolamine transferase had no effect on Lewis expression, nor on lipopolysaccharide profiles, nor on the cholesterol responsiveness of these properties. Disruption of the lipid A 1-phosphatase gene eliminated the effect of cholesterol on lipopolysaccharide profiles but not its effect on Lewis expression.
Together these results suggest that cholesterol depletion leads to aberrant forms of LPS that are dependent upon dephosphorylation of lipid A at the 1-position. A tentative model for the observed effects of cholesterol is discussed in which sequential steps of lipopolysaccharide biogenesis and, independently, presentation of Lewis antigen at the cell surface, depend upon membrane composition. These new findings demonstrate that cholesterol availability permits H. pylori to modify its cell envelope in ways that can impact colonization of host tissue in vivo.
PMCID: PMC2804598  PMID: 20003432

Results 1-25 (289)