PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests 
BMC Microbiology  2012;12:83.
Background
The vaginal microbiome plays an important role in urogenital health. Quantitative real time Polymerase Chain Reaction (qPCR) assays for the most prevalent vaginal Lactobacillus species and bacterial vaginosis species G. vaginalis and A. vaginae exist, but qPCR information regarding variation over time is still very limited. We set up qPCR assays for a selection of seven species and defined the temporal variation over three menstrual cycles in a healthy Caucasian population with a normal Nugent score. We also explored differences in qPCR data between these healthy women and an ‘at risk’ clinic population of Caucasian, African and Asian women with and without bacterial vaginosis (BV), as defined by the Nugent score.
Results
Temporal stability of the Lactobacillus species counts was high with L. crispatus counts of 108 copies/mL and L. vaginalis counts of 106 copies/mL. We identified 2 types of ‘normal flora’ and one ‘BV type flora’ with latent class analysis on the combined data of all women. The first group was particularly common in women with a normal Nugent score and was characterized by a high frequency of L. crispatus, L. iners, L. jensenii, and L. vaginalis and a correspondingly low frequency of L. gasseri and A. vaginae. The second group was characterized by the predominance of L. gasseri and L. vaginalis and was found most commonly in healthy Caucasian women. The third group was commonest in women with a high Nugent score but was also seen in a subset of African and Asian women with a low Nugent score and was characterized by the absence of Lactobacillus species (except for L. iners) but the presence of G. vaginalis and A. vaginae.
Conclusions
We have shown that the quantification of specific bacteria by qPCR contributes to a better description of the non-BV vaginal microbiome, but we also demonstrated that differences in populations such as risk and ethnicity also have to be taken into account. We believe that our selection of indicator organisms represents a feasible strategy for the assessment of the vaginal microbiome and could be useful for monitoring the microbiome in safety trials of vaginal products.
doi:10.1186/1471-2180-12-83
PMCID: PMC3418157  PMID: 22647069
2.  Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora 
BMC Microbiology  2009;9:116.
Background
Despite their antimicrobial potential, vaginal lactobacilli often fail to retain dominance, resulting in overgrowth of the vagina by other bacteria, as observed with bacterial vaginosis. It remains elusive however to what extent interindividual differences in vaginal Lactobacillus community composition determine the stability of this microflora. In a prospective cohort of pregnant women we studied the stability of the normal vaginal microflora (assessed on Gram stain) as a function of the presence of the vaginal Lactobacillus index species (determined through culture and molecular analysis with tRFLP).
Results
From 100 consecutive Caucasian women vaginal swabs were obtained at mean gestational ages of 8.6 (SD 1.4), 21.2 (SD 1.3), and 32.4 (SD 1.7) weeks, respectively. Based on Gram stain, 77 women had normal or Lactobacillus-dominated vaginal microflora (VMF) during the first trimester, of which 18 had grade Ia (L. crispatus cell morphotypes) VMF (23.4%), 16 grade Iab (L. crispatus and other Lactobacillus cell morphotypes) VMF (20.8%), and 43 grade Ib (non-L. crispatus cell morphotypes) VMF (55.8%). Thirteen women with normal VMF at baseline, converted in the second or third trimester (16.9%) to abnormal VMF defined as VMF dominated by non-Lactobacillus bacteria. Compared to grade Ia and grade Iab VMF, grade Ib VMF were 10 times (RR = 9.49, 95% CI 1.30 – 69.40) more likely to convert from normal to abnormal VMF (p = 0.009). This was explained by the observation that normal VMF comprising L. gasseri/iners incurred a ten-fold increased risk of conversion to abnormal VMF relative to non-L. gasseri/iners VMF (RR 10.41, 95% CI 1.39–78.12, p = 0.008), whereas normal VMF comprising L. crispatus had a five-fold decreased risk of conversion to abnormal VMF relative to non-L. crispatus VMF (RR 0.20, 95% CI 0.05–0.89, p = 0.04).
Conclusion
The presence of different Lactobacillus species with the normal vaginal microflora is a major determinant to the stability of this microflora in pregnancy: L. crispatus promotes the stability of the normal vaginal microflora while L. gasseri and/or L. iners predispose to some extent to the occurrence of abnormal vaginal microflora.
doi:10.1186/1471-2180-9-116
PMCID: PMC2698831  PMID: 19490622
3.  Microflora of the penile skin-lined neovagina of transsexual women 
BMC Microbiology  2009;9:102.
Background
The microflora of the penile skin-lined neovagina in male-to-female transsexuals is a recently created microbial niche which thus far has been characterized only to a very limited extent. Yet the knowledge of this microflora can be considered as essential to the follow-up of transsexual women. The primary objective of this study was to map the neo-vaginal microflora in a group of 50 transsexual women for whom a neovagina was constructed by means of the inverted penile skin flap technique. Secondary objectives were to describe possible correlations of this microflora with multiple patients' characteristics, such as sexual orientation, the incidence of vaginal irritation and malodorous vaginal discharge.
Results
Based on Gram stain the majority of smears revealed a mixed microflora that had some similarity with bacterial vaginosis (BV) microflora and that contained various amounts of cocci, polymorphous Gram-negative and Gram-positive rods, often with fusiform and comma-shaped rods, and sometimes even with spirochetes. Candida cells were not seen in any of the smears.
On average 8.6 species were cultured per woman. The species most often found were: Staphylococcus epidermidis, Streptococcus anginosus group spp., Enterococcus faecalis, Corynebacterium sp., Mobiluncus curtisii and Bacteroides ureolyticus. Lactobacilli were found in only one of 30 women
There was no correlation between dilatation habits, having coitus, rinsing habits and malodorous vaginal discharge on the one hand and the presence of a particular species on the other. There was however a highly significant correlation between the presence of E. faecalis on the one hand and sexual orientation and coitus on the other (p = 0.003 and p = 0.027 respectively).
Respectively 82%, 58% and 30% of the samples showed an amplicon after amplification with M. curtisii, Atopobium vaginae and Gardnerella vaginalis primer sets.
Conclusion
Our study is the first to describe the microflora of the penile skin-lined neovagina of transsexual women. It reveals a mixed microflora of aerobe and anaerobe species usually found either on the skin, in the intestinal microflora or in a BV microflora.
doi:10.1186/1471-2180-9-102
PMCID: PMC2695466  PMID: 19457233
4.  Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners 
BMC Microbiology  2007;7:115.
Background
Most studies of the vaginal microflora have been based on culture or on qualitative molecular techniques. Here we applied existing real-time PCR formats for Lactobacillus crispatus, L. gasseri and Gardnerella vaginalis and developed new formats for Atopobium vaginae, L. iners and L. jensenii to obtain a quantitative non culture-based determination of these species in 71 vaginal samples from 32 pregnant and 28 non-pregnant women aged between 18 and 45 years.
Results
The 71 vaginal microflora samples of these women were categorized, using the Ison and Hay criteria, as refined by Verhelst et al. (2005), as follows: grade Ia: 8 samples, grade Iab: 10, grade Ib: 13, grade I-like: 10, grade II: 11, grade III: 12 and grade IV: 7.
L. crispatus was found in all but 5 samples and was the most frequent Lactobacillus species detected. A significantly lower concentration of L. crispatus was found in grades II (p < 0.0001) and III (p = 0.002) compared to grade I. L. jensenii was found in all grades but showed higher concentration in grade Iab than in grade Ia (p = 0.024). A. vaginae and G. vaginalis were present in high concentrations in grade III, with log10 median concentrations (log10 MC), respectively of 9.0 and 9.2 cells/ml. Twenty (38.5%) of the 52 G. vaginalis positive samples were also positive for A. vaginae. In grade II we found almost no L. iners (log10 MC: 0/ml) but a high concentration of L. gasseri (log10 MC: 8.7/ml). By contrast, in grade III we found a high concentration of L. iners (log10 MC: 8.3/ml) and a low concentration of L. gasseri (log10 MC: 0/ml). These results show a negative association between L. gasseri and L. iners (r = -0.397, p = 0.001) and between L. gasseri and A. vaginae (r = -0.408, p < 0.0001).
Conclusion
In our study we found a clear negative association between L. iners and L. gasseri and between A. vaginae and L. gasseri. Our results do not provide support for the generally held proposition that grade II is an intermediate stage between grades I and III, because L. gasseri, abundant in grade II is not predominant in grade III, whereas L. iners, abundant in grade III is present only in low numbers in grade II samples.
doi:10.1186/1471-2180-7-115
PMCID: PMC2233628  PMID: 18093311
5.  Comparison between Gram stain and culture for the characterization of vaginal microflora: Definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora 
BMC Microbiology  2005;5:61.
Background
The microbiological diagnosis of bacterial vaginosis is usually made using Nugent's criteria, a useful but rather laborious scoring system based on counting bacterial cell types on Gram stained slides of vaginal smears. Ison and Hay have simplified the score system to three categories and added a fourth category for microflora with a predominance of the Streptococcus cell type. Because in the Nugent system several cell types are not taken into account for a final score, we carried out a detailed assessment of the composition of the vaginal microflora in relation to standard Gram stain in order the improve the diagnostic value of the Gram stain. To this purpose we compared Gram stain based categorization of vaginal smears with i) species specific PCR for the detection of Gardnerella vaginalis and Atopobium vaginae and with ii) tDNA-PCR for the identification of most cultivable species.
Results
A total of 515 samples were obtained from 197 pregnant women, of which 403 (78.3%) were categorized as grade I microflora, 46 (8.9%) as grade II, 22 (4.3%) as grade III and 8 (1.6%) as grade IV, according to the criteria of Ison and Hay. Another 36 samples (7.0%) were assigned to the new category 'grade I-like', because of the presence of diphtheroid bacilli cell types. We found that 52.7% of the grade I-like samples contained Bifidobacterium spp. while L. crispatus was present in only 2.8% of the samples and G. vaginalis and A. vaginae were virtually absent; in addition, the species diversity of this category was similar to that of grade II specimens.
Based on the presence of different Lactobacillus cell types, grade I specimens were further characterized as grade Ia (40.2%), grade Iab (14.9%) and grade Ib (44.9%). We found that this classification was supported by the finding that L. crispatus was cultured from respectively 87.0% and 76.7% of grade Ia and Iab specimens while this species was present in only 13.3% of grade Ib specimens, a category in which L. gasseri and L. iners were predominant.
Conclusion
Further refinement of Gram stain based grading of vaginal smears is possible by distinguishing additional classes within grade I smears (Ia, Iab and Ib) and by adding a separate category, designated grade I-like. A strong correlation was found between grade Ia and the presence of L. crispatus and between grade I-like and the presence of bifidobacteria. This refinement of Gram stain based scoring of vaginal smears may be helpful to improve the interpretation of the clinical data in future studies, such as the understanding of response to treatment and recurrence of bacterial vaginosis in some women, and the relationship between bacterial vaginosis and preterm birth.
doi:10.1186/1471-2180-5-61
PMCID: PMC1266370  PMID: 16225680
6.  Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis 
BMC Microbiology  2004;4:16.
Background
The pathogenesis of bacterial vaginosis remains largely elusive, although some microorganisms, including Gardnerella vaginalis, are suspected of playing a role in the etiology of this disorder. Recently culture-independent analysis of microbial ecosystems has proven its efficacy in characterizing the diversity of bacterial populations. Here, we report on the results obtained by combining culture and PCR-based methods to characterize the normal and disturbed vaginal microflora.
Results
A total of 150 vaginal swab samples from healthy women (115 pregnant and 35 non-pregnant) were categorized on the basis of Gram stain of direct smear as grade I (n = 112), grade II (n = 26), grade III (n = 9) or grade IV (n = 3). The composition of the vaginal microbial community of eight of these vaginal swabs (three grade I, two grade II and three grade III), all from non-pregnant women, were studied by culture and by cloning of the 16S rRNA genes obtained after direct amplification. Forty-six cultured isolates were identified by tDNA-PCR, 854 cloned 16S rRNA gene fragments were analysed of which 156 by sequencing, yielding a total of 38 species, including 9 presumptively novel species with at least five species that have not been isolated previously from vaginal samples. Interestingly, cloning revealed that Atopobium vaginae was abundant in four out of the five non-grade I specimens. Finally, species specific PCR for A. vaginae and Gardnerella vaginalis pointed to a statistically significant co-occurrence of both species in the bacterial vaginosis samples.
Conclusions
Although historically the literature regarding bacterial vaginosis has largely focused on G. vaginalis in particular, several findings of this study – like the abundance of A. vaginae in disturbed vaginal microflora and the presence of several novel species – indicate that much is to be learned about the composition of the vaginal microflora and its relation to the etiology of BV.
doi:10.1186/1471-2180-4-16
PMCID: PMC419343  PMID: 15102329
7.  Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of cultured mycobacteria in a diagnostic laboratory 
BMC Microbiology  2002;2:4.
Background
The development of DNA amplification for the direct detection of M. tuberculosis from clinical samples has been a major goal of clinical microbiology during the last ten years. However, the limited sensitivity of most DNA amplification techniques restricts their use to smear positive samples. On the other hand, the development of automated liquid culture has increased the speed and sensitivity of cultivation of mycobacteria. We have opted to combine automated culture with rapid genotypic identification (ARDRA: amplified rDNA restriction analysis) for the detection resp. identification of all mycobacterial species at once, instead of attempting direct PCR based detection from clinical samples of M. tuberculosis only.
Results
During 1998–2000 a total of approx. 3500 clinical samples was screened for the presence of M. tuberculosis. Of the 151 culture positive samples, 61 were M. tuberculosis culture positive. Of the 30 smear positive samples, 26 were M. tuberculosis positive. All but three of these 151 mycobacterial isolates could be identified with ARDRA within on average 36 hours. The three isolates that could not be identified belonged to rare species not yet included in our ARDRA fingerprint library or were isolates with an aberrant pattern.
Conclusions
In our hands, automated culture in combination with ARDRA provides with accurate, practically applicable, wide range identification of mycobacterial species. The existing identification library covers most species, and can be easily updated when new species are studied or described. The drawback is that ARDRA is culture-dependent, since automated culture of M. tuberculosis takes on average 16.7 days (range 6 to 29 days). However, culture is needed after all to assess the antibiotic susceptibility of the strains.
doi:10.1186/1471-2180-2-4
PMCID: PMC101405  PMID: 11945178

Results 1-7 (7)