PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Longitudinal survey of Staphylococcus aureus in cystic fibrosis patients using a multiple-locus variable-number of tandem-repeats analysis method 
BMC Microbiology  2010;10:24.
Background
Staphylococcus aureus infection in patients with cystic fibrosis (CF) is frequent and may be due to colonization by a few pathogenic lineages. Systematic genotyping of all isolates, methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) is necessary to identify such lineages and follow their evolution in patients. Multiple-locus variable-number tandem repeat analysis (MLVA/VNTR) was used to survey S. aureus clinical isolates in a French paediatric CF centre.
Results
During a 30 months period, 108 patients, aged 2 to 21 years, regularly followed up at the centre, provided sputum for culture. From 79 patients, a total of 278 isolates were genotyped by MLVA, resolving into 110 genotypes and 19 clonal complexes (CC) composed of similar or closely related isolates. 71% of the strains were distributed into four main CCs, in term of number of isolates and number of genotypes. Spa (Staphylococcus protein A) typing was performed on representative samples, showing an excellent concordance with MLVA. In 17 patients, strains from two to four different CCs were recovered over time. On six occasions, S. aureus isolates with the same genotype were shared by 2 different patients and they belonged to one of the four main clusters. Methicillin-resistance was observed in 60% of the isolates, 90% of which belonged to the main clonal complexes CC8, CC45 and CC5. In 5 patients, methicillin-resistance of S. aureus isolates was not associated with the mecA gene: for four patients, it was due to overproduction of β-lactamase, leading to BOR-SA (borderline S. aureus) isolates, while a strain showing probably a new modified penicillin-binding capacity (MOD-SA) was observed from one patient.
Conclusion
Systematic genotyping of S. aureus isolates recovered from sputum of CF children allows a thorough analysis of the strains responsible for sporadic as well as chronic colonization and the follow up of their evolution over time. We show here that more than 70% of these strains belong to 4 major CCs. MSSA as well as MRSA, BOR-SA and MOD-SA isolates can persist over several years, despite antibiotic treatments.
doi:10.1186/1471-2180-10-24
PMCID: PMC2825195  PMID: 20105324
2.  MLVA-16 typing of 295 marine mammal Brucella isolates from different animal and geographic origins identifies 7 major groups within Brucella ceti and Brucella pinnipedialis 
BMC Microbiology  2009;9:145.
Background
Since 1994, Brucella strains have been isolated from a wide range of marine mammals. They are currently recognized as two new Brucella species, B. pinnipedialis for the pinniped isolates and B. ceti for the cetacean isolates in agreement with host preference and specific phenotypic and molecular markers. In order to investigate the genetic relationships within the marine mammal Brucella isolates and with reference to terrestrial mammal Brucella isolates, we applied in this study the Multiple Loci VNTR (Variable Number of Tandem Repeats) Analysis (MLVA) approach. A previously published assay comprising 16 loci (MLVA-16) that has been shown to be highly relevant and efficient for typing and clustering Brucella strains from animal and human origin was used.
Results
294 marine mammal Brucella strains collected in European waters from 173 animals and a human isolate from New Zealand presumably from marine origin were investigated by MLVA-16. Marine mammal Brucella isolates were shown to be different from the recognized terrestrial mammal Brucella species and biovars and corresponded to 3 major related groups, one specific of the B. ceti strains, one of the B. pinnipedialis strains and the last composed of the human isolate. In the B. ceti group, 3 subclusters were identified, distinguishing a cluster of dolphin, minke whale and porpoise isolates and two clusters mostly composed of dolphin isolates. These results were in accordance with published analyses using other phenotypic or molecular approaches, or different panels of VNTR loci. The B. pinnipedialis group could be similarly subdivided in 3 subclusters, one composed exclusively of isolates from hooded seals (Cystophora cristata) and the two others comprising other seal species isolates.
Conclusion
The clustering analysis of a large collection of marine mammal Brucella isolates from European waters significantly strengthens the current view of the population structure of these two species, and their relative position with respect to the rest of the Brucella genus. MLVA-16 is confirmed as being a rapid, highly discriminatory and reproducible method to classify Brucella strains including the marine mammal isolates. The Brucella2009 MLVA-16 genotyping database available at http://mlva.u-psud.fr/ is providing a detailed coverage of all 9 currently recognized Brucella species.
doi:10.1186/1471-2180-9-145
PMCID: PMC2719651  PMID: 19619320
3.  Fieldable genotyping of Bacillus anthracis and Yersinia pestis based on 25-loci Multi Locus VNTR Analysis 
BMC Microbiology  2008;8:21.
Background
Anthrax and plague are diseases caused by Bacillus anthracis and Yersinia pestis respectively. These bacteria are etiological agents for worldwide zoonotic diseases and are considered among the most feared potential bioterror agents. Strain differentiation is difficult for these microorganisms because of their high intraspecies genome homogeneity. Moreover, fast strain identification and comparison with known genotypes may be crucial for naturally occurring outbreaks versus bioterrorist events discrimination.
Results
Thirty-nine B. anthracis and ten Y. pestis strains, representative of the species genetic diversity, were genotyped by Agilent 2100 Bioanalyzer using previously described Multiple Locus VNTR Analysis assays (MLVA). Results were compared to previous data obtained by standard genotyping system (capillary electrophoresis on automatic sequencer) and, when necessary, direct amplicon sequencing. A reference comparison table containing actual fragment sizes, sequencer sizes and Agilent sizes was produced.
Conclusion
In this report an automated DNA electrophoresis apparatus which provides a cheaper alternative compared to capillary electrophoresis approaches was applied for genotyping of B. anthracis and Y. pestis. This equipment, uses pre-cast gels and provides easy transportation, low maintenance and overall general logistic requirements and costs, is easy to set up and provides rapid analysis. This platform is a candidate for on-site MLVA genotyping of biothreat agents as well as other bacterial pathogens. It is an alternative to the more expensive and demanding capillary electrophoresis methods, and to the less expensive but more time-consuming classical gel electrophoresis approach.
doi:10.1186/1471-2180-8-21
PMCID: PMC2257963  PMID: 18230125
4.  Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing 
BMC Microbiology  2006;6:38.
Background
Coxiella burnetii, the causative agent of Q fever, has a wide host range. Few epidemiological tools are available, and they are often expensive or not easily standardized across laboratories. In this work, C. burnetii isolates from livestock and ticks were typed using infrequent restriction site-PCR (IRS-PCR) and multiple loci variable number of tandem repeats (VNTR) analysis (MLVA).
Results
By applying IRS-PCR, 14 C. burnetii isolates could be divided into six groups containing up to five different isolates. Clustering as deduced from MLVA typing with 17 markers provided an increased resolution with an excellent agreement to IRS-PCR, and with the plasmid type of each strain. MLVA was then applied to 28 additional C. burnetii isolates of different origin and 36 different genotypes were identified among the 42 isolates investigated. The clustering obtained is in agreement with published Multiple Locus Sequence Typing (MLST) data. Two panels of markers are proposed, panel 1 which can be confidently typed on agarose gel at a lower cost and in any laboratory setting (10 minisatellite markers with a repeat unit larger than 9 bp), and panel 2 which comprises 7 microsatellites and provides a higher discriminatory power.
Conclusion
Our analyses demonstrate that MLVA is a powerful and promising molecular typing tool with a high resolution and of low costs. The consistency of the results with independent methods suggests that MLVA can be applied for epidemiological studies. The resulting data can be queried on a dedicated MLVA genotyping Web service.
doi:10.1186/1471-2180-6-38
PMCID: PMC1488860  PMID: 16640773
5.  Genotyping of Bacillus anthracis strains based on automated capillary 25-loci Multiple Locus Variable-Number Tandem Repeats Analysis 
BMC Microbiology  2006;6:33.
Background
The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR) Analysis (MLVA) assay based on 20 markers was previously described. It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. However in an emergency situation, faster genotyping and access to representative databases is necessary.
Results
Genotyping of B. anthracis reference strains and isolates from France and Italy was done using a 25 loci MLVA assay combining 21 previously described loci and 4 new ones. DNA was amplified in 4 multiplex PCR reactions and the length of the resulting 25 amplicons was estimated by automated capillary electrophoresis. The results were reproducible and the data were consistent with other gel based methods once differences in mobility patterns were taken into account. Some alleles previously unresolved by agarose gel electrophoresis could be resolved by capillary electrophoresis, thus further increasing the assay resolution. One particular locus, Bams30, is the result of a recombination between a 27 bp tandem repeat and a 9 bp tandem repeat. The analysis of the array illustrates the evolution process of tandem repeats.
Conclusion
In a crisis situation of suspected bioterrorism, standardization, speed and accuracy, together with the availability of reference typing data are important issues, as illustrated by the 2001 anthrax letters event. In this report we describe an upgrade of the previously published MLVA method for genotyping of B. anthracis and apply the method to the typing of French and Italian B. anthracis strain collections. The increased number of markers studied compared to reports using only 8 loci greatly improves the discrimination power of the technique. An Italian strain belonging to the B branch was described, and two new branches, D and E, are proposed. Owing to the upgrading achieved here, precise genotyping can now be produced either by automated capillary electrophoresis, or by the more accessible but slower and for some markers slightly less accurate agarose gel methodology.
doi:10.1186/1471-2180-6-33
PMCID: PMC1479350  PMID: 16600037
6.  Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay 
BMC Microbiology  2006;6:9.
Background
The classification of Brucella into species and biovars relies on phenotypic characteristics and sometimes raises difficulties in the interpretation of the results due to an absence of standardization of the typing reagents. In addition, the resolution of this biotyping is moderate and requires the manipulation of the living agent. More efficient DNA-based methods are needed, and this work explores the suitability of multiple locus variable number tandem repeats analysis (MLVA) for both typing and species identification.
Results
Eighty tandem repeat loci predicted to be polymorphic by genome sequence analysis of three available Brucella genome sequences were tested for polymorphism by genotyping 21 Brucella strains (18 reference strains representing the six 'classical' species and all biovars as well as 3 marine mammal strains currently recognized as members of two new species). The MLVA data efficiently cluster the strains as expected according to their species and biovar. For practical use, a subset of 15 loci preserving this clustering was selected and applied to the typing of 236 isolates. Using this MLVA-15 assay, the clusters generated correspond to the classical biotyping scheme of Brucella spp. The 15 markers have been divided into two groups, one comprising 8 user-friendly minisatellite markers with a good species identification capability (panel 1) and another complementary group of 7 microsatellite markers with higher discriminatory power (panel 2).
Conclusion
The MLVA-15 assay can be applied to large collections of Brucella strains with automated or manual procedures, and can be proposed as a complement, or even a substitute, of classical biotyping methods. This is facilitated by the fact that MLVA is based on non-infectious material (DNA) whereas the biotyping procedure itself requires the manipulation of the living agent. The data produced can be queried on a dedicated MLVA web service site.
doi:10.1186/1471-2180-6-9
PMCID: PMC1513380  PMID: 16469109
7.  Evaluation and selection of tandem repeat loci for Streptococcus pneumoniae MLVA strain typing 
BMC Microbiology  2005;5:66.
Background
Precise identification of bacterial pathogens at the strain level is essential for epidemiological purposes. In Streptococcus pneumoniae, the existence of 90 different serotypes makes the typing particularly difficult and requires the use of highly informative tools. Available methods are relatively expensive and cannot be used for large-scale or routine typing of any new isolate. We explore here the potential of MLVA (Multiple Loci VNTR Analysis; VNTR, Variable Number of Tandem Repeats), a method of growing importance in the field of molecular epidemiology, for genotyping of Streptococcus pneumoniae.
Results
Available genome sequences were searched for polymorphic tandem repeats. The loci identified were typed across a collection of 56 diverse isolates and including a group of serotype 1 isolates from Africa. Eventually a set of 16 VNTRs was proposed for MLVA-typing of S. pneumoniae. These robust markers were sufficient to discriminate 49 genotypes and to aggregate strains on the basis of the serotype and geographical origin, although some exceptions were found. Such exceptions may reflect serotype switching or horizontal transfer of genetic material.
Conclusion
We describe a simple PCR-based MLVA genotyping scheme for S. pneumoniae which may prove to be a powerful complement to existing tools for epidemiological studies. Using this technique we uncovered a clonal population of strains, responsible for infections in Burkina Faso. We believe that the proposed MLVA typing scheme can become a standard for epidemiological studies of S. pneumoniae.
doi:10.1186/1471-2180-5-66
PMCID: PMC1315331  PMID: 16287512
8.  High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing 
BMC Microbiology  2002;2:37.
Background
Currently available reference methods for the molecular epidemiology of the Mycobacterium tuberculosis complex either lack sensitivity or are still too tedious and slow for routine application. Recently, tandem repeat typing has emerged as a potential alternative. This report contributes to the development of tandem repeat typing for M. tuberculosis by summarising the existing data, developing additional markers, and setting up a freely accessible, fast, and easy to use, internet-based service for strain identification.
Results
A collection of 21 VNTRs incorporating 13 previously described loci and 8 newly evaluated markers was used to genotype 90 strains from the M. tuberculosis complex (M. tuberculosis (64 strains), M. bovis (9 strains including 4 BCG representatives), M. africanum (17 strains)). Eighty-four different genotypes are defined. Clustering analysis shows that the M. africanum strains fall into three main groups, one of which is closer to the M. tuberculosis strains, and an other one is closer to the M. bovis strains. The resulting data has been made freely accessible over the internet to allow direct strain identification queries.
Conclusions
Tandem-repeat typing is a PCR-based assay which may prove to be a powerful complement to the existing epidemiological tools for the M. tuberculosis complex. The number of markers to type depends on the identification precision which is required, so that identification can be achieved quickly at low cost in terms of consumables, technical expertise and equipment.
doi:10.1186/1471-2180-2-37
PMCID: PMC140014  PMID: 12456266
9.  A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis 
BMC Microbiology  2001;1:2.
Background
Some pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies.
Results
This report presents a database () of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains). Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested.
Conclusions
Analysis of the currently available bacterial genome sequences classifies Bacillus anthracis and Yersinia pestis as having an average (approximately 30 per Mb) density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for polymorphism was sufficient to quickly develop a set of more than fifteen informative markers, some of which show a very high degree of polymorphism. In one instance, the polymorphism information content index reaches 0.82 with allele length covering a wide size range (600-1950 bp), and nine alleles resolved in the small number of independent Bacillus anthracis strains typed here.
PMCID: PMC31411  PMID: 11299044

Results 1-9 (9)