PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Zoospore interspecific signaling promotes plant infection by Phytophthora 
BMC Microbiology  2010;10:313.
Background
Oomycetes attack a huge variety of economically and ecologically important plants. These pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the infection process. When signal molecules are present at or above threshold level, single zoospores can infect plants. However, at the beginning of a growing season population densities of individual species are likely below those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. It is unclear whether these molecules are shared among related species and what their chemistries are.
Results
Zoospore-free fluids (ZFF) from Phytophthora capsici, P. hydropathica, P. nicotianae (ZFFnic), P. sojae (ZFFsoj) and Pythium aphanidermatum were cross tested for stimulating plant infection in three pathosystems. All ZFFs tested significantly increased infection of Catharanthus roseus by P. nicotianae. Similar cross activities were observed in infection of Lupinus polyphyllus and Glycine max by P. sojae. Only ZFFnic and ZFFsoj cross induced zoospore aggregation at a density of 2 × 103 ml-1. Pure autoinducer-2 (AI-2), a component in ZFF, caused zoospore lysis of P. nicotianae before encystment and did not stimulate plant infection at concentrations from 0.01 to 1000 μM. P. capsici transformants with a transiently silenced AI-2 synthase gene, ribose phosphate isomerase (RPI), infected Capsicum annuum seedlings at the same inoculum concentration as the wild type. Acyl-homoserine lactones (AHLs) were not detected in any ZFFs. After freeze-thaw treatments, ZFF remained active in promoting plant infection but not zoospore aggregation. Heat treatment by boiling for 5 min also did not affect the infection-stimulating property of ZFFnic.
Conclusion
Oomycetes produce and use different molecules to regulate zoospore aggregation and plant infection. We found that some of these signal molecules could act in an inter-specific manner, though signals for zoospore aggregation were somewhat restricted. This self-interested cooperation among related species gives individual pathogens of the same group a competitive advantage over pathogens and microbes from other groups for limited resources. These findings help to understand why these pathogens often are individually undetectable until severe disease epidemics have developed. The signal molecules for both zoospore aggregation and plant infection are distinct from AI-2 and AHL.
doi:10.1186/1471-2180-10-313
PMCID: PMC3016323  PMID: 21138563
2.  Common themes in nutrient acquisition by plant symbiotic microbes, described by the Gene Ontology 
BMC Microbiology  2009;9(Suppl 1):S6.
A critical function for symbionts is the acquisition of nutrients from their host. Relationships between hosts and symbionts range from biotrophic mutualism to necrotrophic parasitism, with a corresponding range of structures to facilitate nutrient flow between host and symbiont. Here, we review common themes among the nutrient acquisition strategies of a range of plant symbiotic microorganisms, including mutualistic symbionts, biotrophic pathogens that feed from living tissue, necrotrophic pathogens that kill host tissue, and hemibiotrophic pathogens that switch from biotrophy to necrotrophy. We show how Gene Ontology (GO) terms developed by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium can be used for describing commonalities in nutrient acquisition among diverse plant symbionts. Where appropriate, parallels found among animal symbionts are also highlighted.
doi:10.1186/1471-2180-9-S1-S6
PMCID: PMC2654666  PMID: 19278554
3.  Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms 
BMC Microbiology  2009;9(Suppl 1):S7.
Plant diseases caused by fungi and oomycetes result in significant economic losses every year. Although phylogenetically distant, the infection processes by these organisms share many common features. These include dispersal of an infectious particle, host adhesion, recognition, penetration, invasive growth, and lesion development. Previously, many of these common processes did not have corresponding Gene Ontology (GO) terms. For example, no GO terms existed to describe processes related to the appressorium, an important structure for infection by many fungi and oomycetes. In this mini-review, we identify common features of the pathogenic processes of fungi and oomycetes and create a pathogenesis model using 256 newly developed and 38 extant GO terms, with an emphasis on the appressorium and signal transduction. This set of standardized GO terms provides a solid base to further compare and contrast the molecular underpinnings of fungal and oomycete pathogenesis.
doi:10.1186/1471-2180-9-S1-S7
PMCID: PMC2654667  PMID: 19278555
4.  Programmed cell death in host-symbiont associations, viewed through the Gene Ontology 
BMC Microbiology  2009;9(Suppl 1):S5.
Manipulation of programmed cell death (PCD) is central to many host microbe interactions. Both plant and animal cells use PCD as a powerful weapon against biotrophic pathogens, including viruses, which draw their nutrition from living tissue. Thus, diverse biotrophic pathogens have evolved many mechanisms to suppress programmed cell death, and mutualistic and commensal microbes may employ similar mechanisms. Necrotrophic pathogens derive their nutrition from dead tissue, and many produce toxins specifically to trigger programmed cell death in their hosts. Hemibiotrophic pathogens manipulate PCD in a most exquisite way, suppressing PCD during the biotrophic phase and stimulating it during the necrotrophic phase. This mini-review will summarize the mechanisms that have evolved in diverse microbes and hosts for controlling PCD and the Gene Ontology terms developed by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium for describing those mechanisms.
doi:10.1186/1471-2180-9-S1-S5
PMCID: PMC2654665  PMID: 19278553
5.  Common and contrasting themes in host cell-targeted effectors from bacterial, fungal, oomycete and nematode plant symbionts described using the Gene Ontology 
BMC Microbiology  2009;9(Suppl 1):S3.
A wide diversity of plant-associated symbionts, including microbes, produce proteins that can enter host cells, or are injected into host cells in order to modify the physiology of the host to promote colonization. These molecules, termed effectors, commonly target the host defense signaling pathways in order to suppress the defense response. Others target the gene expression machinery or trigger specific modifications to host morphology or physiology that promote the nutrition and proliferation of the symbiont. When recognized by the host's surveillance machinery, which includes cognate resistance (R) gene products, defense responses are engaged to restrict pathogen proliferation. Effectors from diverse symbionts may be delivered into plant cells via varied mechanisms, including whole organism cellular entry (viruses, some bacteria and fungi), type III and IV secretion (in bacteria), physical injection (nematodes and insects) and protein translocation signal sequences (oomycetes and fungi). This mini-review will summarize both similarities and differences in effectors and effector delivery systems found in diverse plant-associated symbionts as well as how these are described with Plant-Associated Microbe Gene Ontology (PAMGO) terms.
doi:10.1186/1471-2180-9-S1-S3
PMCID: PMC2654663  PMID: 19278551
6.  Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology 
BMC Microbiology  2009;9(Suppl 1):S2.
Protein secretion plays a central role in modulating the interactions of bacteria with their environments. This is particularly the case when symbiotic bacteria (whether pathogenic, commensal or mutualistic) are interacting with larger host organisms. In the case of Gram-negative bacteria, secretion requires translocation across the outer as well as the inner membrane, and a diversity of molecular machines have been elaborated for this purpose. A number of secreted proteins are destined to enter the host cell (effectors and toxins), and thus several secretion systems include apparatus to translocate proteins across the plasma membrane of the host also. The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium has been developing standardized terms for describing biological processes and cellular components that play important roles in the interactions of microbes with plant and animal hosts, including the processes of bacterial secretion. Here we survey bacterial secretion systems known to modulate interactions with host organisms and describe Gene Ontology terms useful for describing the components and functions of these systems, and for capturing the similarities among the diverse systems.
doi:10.1186/1471-2180-9-S1-S2
PMCID: PMC2654662  PMID: 19278550

Results 1-6 (6)