PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis 
BMC Microbiology  2010;10:81.
Background
The histone-like protein Hc2 binds DNA in Chlamydia trachomatis and is known to vary in size between 165 and 237 amino acids, which is caused by different numbers of lysine-rich pentamers. A more complex structure was seen in this study when sequences from 378 specimens covering the hctB gene, which encodes Hc2, were compared.
Results
This study shows that the size variation is due to different numbers of 36-amino acid long repetitive elements built up of five pentamers and one hexamer. Deletions and amino acid substitutions result in 14 variants of repetitive elements and these elements are combined into 22 configurations. A protein with similar structure has been described in Bordetella but was now also found in other genera, including Burkholderia, Herminiimonas, Minibacterium and Ralstonia.
Sequence determination resulted in 41 hctB variants that formed four clades in phylogenetic analysis. Strains causing the eye disease trachoma and strains causing invasive lymphogranuloma venereum infections formed separate clades, while strains from urogenital infections were more heterogeneous. Three cases of recombination were identified. The size variation of Hc2 has previously been attributed to deletions of pentamers but we show that the structure is more complex with both duplication and deletions of 36-amino acid long elements.
Conclusions
The polymorphisms in Hc2 need to be further investigated in experimental studies since DNA binding is essential for the unique biphasic life cycle of the Chlamydiacae. The high sequence variation in the corresponding hctB gene enables phylogenetic analysis and provides a suitable target for the genotyping of C. trachomatis.
doi:10.1186/1471-2180-10-81
PMCID: PMC2848022  PMID: 20236532
2.  The vaa locus of Mycoplasma hominis contains a divergent genetic islet encoding a putative membrane protein 
BMC Microbiology  2004;4:37.
Background
The Mycoplasma hominis vaa gene encodes a highly variable, surface antigen involved in the adhesion to host cells. We have analysed the structure of the vaa locus to elucidate the genetic basis for variation of vaa.
Results
Mapping of vaa on existing physical maps of five M. hominis isolates by pulsed field gel electrophoresis revealed that vaa is located in a genomic region containing the majority of other characterized membrane protein genes of M. hominis. Sequencing of an 11 kb region containing the vaa locus of M. hominis isolate 132 showed the presence of conserved housekeeping genes at the borders of the region, uvrA upstream and the hitABL operon downstream to vaa. Analysis of 20 M. hominis isolates revealed that the vaa upstream region was conserved whereas the downstream region was highly variable. In isolate 132 this region contained an open reading frame (ORF) encoding a putative 160 kDa membrane protein. Homologous ORFs were present in half of the isolates, whereas this ORF, termed vmp (variable membrane protein), was deleted from the locus in the remaining isolates. Compellingly, the conserved upstream region and variable downstream region of vaa correlates with the genetic structure of vaa itself which consists of a conserved 5' end and a variable 3' end containing a variable number of exchangeable sequence cassettes.
Conclusion
Our data demonstrate that the vaa locus contains a divergent genetic islet, and indicate pronounced intraspecies recombination. The high variability level of the locus indicate that it is a chromosomal 'hot spot', presumably important for sustaining diversity and a high adaptation potential of M. hominis.
doi:10.1186/1471-2180-4-37
PMCID: PMC524362  PMID: 15385054
3.  Development of real-time PCR for detection of Mycoplasma hominis 
BMC Microbiology  2004;4:35.
Background
Mycoplasma hominis is associated with pelvic inflammatory disease, bacterial vaginosis, post partum fever, sepsis and infections of the central nervous system often leading to serious conditions. Association with development of female infertility has also been suggested, but different publications present different results. We developed a sensitive and fast diagnostic real-time PCR to test clinical samples from women undergoing laparoscopic examination before fertility treatment. To develop a test for the detection and quantification of M. hominis we selected a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (gap), as a target.
Results
Real-time PCR was optimized to detect 10 copies of M. hominis PG21 genomic DNA. A fluorescence signal was measured for all 20 other M. hominis isolates, and melting curves analysis showed variations in the melting temperature in agreement with sequence variation in the region of the probes. There was no amplification of other mycoplasmal DNA and human DNA. Eighty-three patient cervical swab samples from infertile women were cultured for M. hominis in the BEa medium. Two of the samples (2.4%) were positive after 48 hours of incubation. The real-time PCR detected the same two samples positive, and the DNA concentrations in the clinical specimens were calculated to 37.000 copies/ml and 88.500 copies/ml, respectively.
Conclusion
The results demonstrate that real-time PCR may prove to be a rapid alternative to the traditional cultivation method. Information on bacterial load in genital swabs can be obtained. The assay allowed detection of M. hominis in a closed system reducing the risk of contamination by amplicon carry-over.
doi:10.1186/1471-2180-4-35
PMCID: PMC518963  PMID: 15350196
Fluorescence probes; gap gene; LightCycler PCR,Mycoplasma hominis; real-time PCR
4.  Immune response to Mycoplasma pneumoniae P1 and P116 in patients with atypical pneumonia analyzed by ELISA 
BMC Microbiology  2004;4:7.
Background
Serology is often used for the diagnosis of Mycoplasma pneumoniae. It is important to identify specific antigens that can distinguish between the presence or absence of antibodies against M. pneumoniae. The two proteins, P116 and P1, are found to be immunogenic. By using these in ELISA it is possible to identify an immune response against M. pneumoniae in serum samples.
Results
A recombinant protein derived from the P116 protein and one from the P1 protein were used in two ELISA tests, rP116-ELISA and rP1-ELISA. Human serum samples from patients with atypical pneumonia were tested and compared to the results of the complement fixation test. There was a good agreement between the two tests but the rP1-ELISA showed the best discrimination between positive and negative samples.
Conclusion
Two ELISA tests based on recombinant proteins have been analysed and compared to the complement fixation test results. The two ELISA tests were found suitable for use in serodiagnostics of M. pneumoniae infections. The use of specific antigens eliminates the risk of cross reaction to an immune response against other bacteria.
doi:10.1186/1471-2180-4-7
PMCID: PMC362870  PMID: 15018643
Mycoplasma pneumoniae; atypical pneumonia patients; ELISA; recombinant proteins
5.  Evaluation of five DNA extraction methods for purification of DNA from atherosclerotic tissue and estimation of prevalence of Chlamydia pneumoniae in tissue from a Danish population undergoing vascular repair 
BMC Microbiology  2003;3:19.
Background
To date PCR detection of Chlamydia pneumoniae DNA in atherosclerotic lesions from Danish patients has been unsuccessful. To establish whether non-detection was caused by a suboptimal DNA extraction method, we tested five different DNA extraction methods for purification of DNA from atherosclerotic tissue.
Results
The five different DNA extraction methods were tested on homogenate of atherosclerotic tissue spiked with C. pneumoniae DNA or EB, on pure C. pneumoniae DNA samples and on whole C. pneumoniae EB. Recovery of DNA was measured with a C. pneumoniae-specific quantitative real-time PCR. A DNA extraction method based on DNA-binding to spin columns with a silica-gel membrane (DNeasy Tissue kit) showed the highest recovery rate for the tissue samples and pure DNA samples. However, an automated extraction method based on magnetic glass particles (MagNA Pure) performed best on intact EB and atherosclerotic tissue spiked with EB. The DNeasy Tissue kit and MagNA Pure methods and the highly sensitive real-time PCR were subsequently used on 78 atherosclerotic tissue samples from Danish patients undergoing vascular repair. None of the samples were positive for C. pneumoniae DNA. The atherosclerotic samples were tested for inhibition by spiking with two different, known amounts of C. pneumoniae DNA and no samples showed inhibition.
Conclusion
As a highly sensitive PCR method and an optimised DNA extraction method were used, non-detection in atherosclerotic tissue from the Danish population was probably not caused by use of inappropriate methods. However, more samples may need to be analysed per patient to be completely certain on this. Possible methodological and epidemiological reasons for non-detection of C. pneumoniae DNA in atherosclerotic tissue from the Danish population are discussed. Further testing of DNA extraction methods is needed as this study has shown considerable intra- and inter-method variation in DNA recovery.
doi:10.1186/1471-2180-3-19
PMCID: PMC201026  PMID: 12952556
Chlamydia pneumoniae; atherosclerotic tissue; DNA extraction; real-time PCR
6.  The expression, processing and localization of polymorphic membrane proteins in Chlamydia pneumoniae strain CWL029 
BMC Microbiology  2002;2:36.
Background
Chlamydiae are obligate intracellular bacteria, which are important human pathogens. Genome sequences of C. trachomatis and C. pneumoniae have revealed the presence of a Chlamydia specific gene family encoding polymorphic outer membrane proteins, Pmps. In C. pneumoniae the family comprises twenty-one members, which are all transcribed. In the present study, the expression, processing and localisation of the sixteen full-length Pmps in C. pneumoniae strain CWL029 have been further investigated by two-dimensional gel electrophoresis and immunofluorescence microscopy.
Results
Ten Pmps were identified in elementary bodies (EBs). Eight of these were investigated with respect to time dependent expression and all were found to be up-regulated between 36 and 48 hours post infection. Antibodies against Pmp6, 8, 10, 11 and 21 reacted with chlamydiae when infected cells were formalin fixed. Pmp6, Pmp20 and Pmp21 were found in cleaved forms, and the cleavage sites of Pmp6 and Pmp21 were identified.
Conclusions
The Pmps are heavily up-regulated at the time of conversion of RB to EB, and at least ten Pmps are present in EBs. Due to their reaction in formalin fixation it is likely that Pmp6, 8, 10, 11 and 21 are surface exposed. The identified cleavage sites of Pmp6 and Pmp21 are in agreement with the theory that the Pmps are autotransporters.
doi:10.1186/1471-2180-2-36
PMCID: PMC140015  PMID: 12453305
7.  Determination of PCR efficiency in chelex-100 purified clinical samples and comparison of real-time quantitative PCR and conventional PCR for detection of Chlamydia pneumoniae 
BMC Microbiology  2002;2:17.
Background
Chlamydia pneumoniae infection has been detected by serological methods, but PCR is gaining more interest. A number of different PCR assays have been developed and some are used in combination with serology for diagnosis. Real-time PCR could be an attractive new PCR method; therefore it must be evaluated and compared to conventional PCR methods.
Results
We compared the performance of a newly developed real-time PCR with a conventional PCR method for detection of C. pneumoniae. The PCR methods were tested on reference samples containing C. pneumoniae DNA and on 136 nasopharyngeal samples from patients with a chronic cough. We found the same detection limit for the two methods and that clinical performance was equal for the real-time PCR and for the conventional PCR method, although only three samples tested positive. To investigate whether the low prevalence of C. pneumoniae among patients with a chronic cough was caused by suboptimal PCR efficiency in the samples, PCR efficiency was determined based on the real-time PCR. Seventeen of twenty randomly selected clinical samples had a similar PCR efficiency to samples containing pure genomic C. pneumoniae DNA.
Conclusions
These results indicate that the performance of real-time PCR is comparable to that of conventional PCR, but that needs to be confirmed further. Real-time PCR can be used to investigate the PCR efficiency which gives a rough estimate of how well the real-time PCR assay works in a specific sample type. Suboptimal PCR efficiency of PCR is not a likely explanation for the low positivity rate of C. pneumoniae in patients with a chronic cough.
doi:10.1186/1471-2180-2-17
PMCID: PMC117782  PMID: 12106506

Results 1-7 (7)