Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Opposing roles of σB and σB-controlled SpoVG in the global regulation of esxA in Staphylococcus aureus 
BMC Microbiology  2012;12:17.
The production of virulence factors in Staphylococcus aureus is tightly controlled by a complex web of interacting regulators. EsxA is one of the virulence factors that are excreted by the specialized, type VII-like Ess secretion system of S. aureus. The esxA gene is part of the σB-dependent SpoVG subregulon. However, the mode of action of SpoVG and its impact on other global regulators acting on esxA transcription is as yet unknown.
We demonstrate that the transcription of esxA is controlled by a regulatory cascade involving downstream σB-dependent regulatory elements, including the staphylococcal accessory regulator SarA, the ArlRS two-component system and SpoVG. The esxA gene, preceding the ess gene cluster, was shown to form a monocistronic transcript that is driven by a σA promoter, whereas a putative σB promoter identified upstream of the σA promoter was shown to be inactive. Transcription of esxA was strongly upregulated upon either sarA or sigB inactivation, but decreased in agr, arlR and spoVG single mutants, suggesting that agr, ArlR and SpoVG are able to increase esxA transcription and relieve the repressing effect of the σB-controlled SarA on esxA.
SpoVG is a σB-dependent element that fine-tunes the expression of esxA by counteracting the σB-induced repressing activity of the transcriptional regulator SarA and activates esxA transcription.
PMCID: PMC3313859  PMID: 22272815
2.  Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors 
BMC Microbiology  2011;11:72.
SecDF is an accessory factor of the conserved Sec protein translocation machinery and belongs to the resistance-nodulation-cell division (RND) family of multidrug exporters. SecDF has been shown in Escherichia coli and Bacillus subtilis to be involved in the export of proteins. RND proteins can mediate resistance against various substances and might be of relevance in antimicrobial therapy. The role of RND proteins in Staphylococcus aureus has not yet been determined.
Markerless deletion mutants were constructed to analyze the impact of the so far uncharacterized RND proteins in S. aureus. While the lack of Sa2056 and Sa2339 caused no phenotype regarding growth and resistance, the secDF mutant resulted in a pleiotropic phenotype. The secDF mutant was cold sensitive, but grew normally in rich medium at 37°C. Resistance to beta-lactams, glycopeptides and the RND substrates acriflavine, ethidium bromide and sodium dodecyl sulfate was reduced. The secDF mutant showed an aberrant cell separation and increased spontaneous and Triton X-100 induced autolysis, although the amounts of penicillin-binding proteins in the membrane were unchanged. The impact of secDF deletion on transcription and expression of specific virulence determinants varied: While coagulase transcription and activity were reduced, the opposite was observed for the autolysin Atl. A reduction of the transcription of the cell wall anchored protein A (spa) was also found. The accumulation of SpA in the membrane and lowered amounts in the cell wall pointed to an impaired translocation.
The combination of different effects of secDF deletion on transcription, regulation and translocation lead to impaired cell division, reduced resistance and altered expression of virulence determinants suggesting SecDF to be of major relevance in S. aureus. Thus SecDF could be a potential target for the control and eradication of S. aureus in the future.
PMCID: PMC3090319  PMID: 21486434
3.  Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics 
BMC Microbiology  2011;11:16.
Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS) in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents.
We have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315), which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes.
CWSS induction profiles were unique for each antibiotic. Differences observed in optimal induction conditions for specific antibiotics should be determined and taken into account when designing and interpreting CWSS induction studies.
PMCID: PMC3032642  PMID: 21251258
4.  Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus 
BMC Microbiology  2009;9:95.
The catabolite control protein A (CcpA) is a member of the LacI/GalR family of transcriptional regulators controlling carbon-metabolism pathways in low-GC Gram-positive bacteria. It functions as a catabolite repressor or activator, allowing the bacteria to utilize the preferred carbon source over secondary carbon sources. This study is the first CcpA-dependent transcriptome and proteome analysis in Staphylococcus aureus, focussing on short-time effects of glucose under stable pH conditions.
The addition of glucose to exponentially growing S. aureus increased the expression of genes and enzymes of the glycolytic pathway, while genes and proteins of the tricarboxylic acid (TCA) cycle, required for the complete oxidation of glucose, were repressed via CcpA. Phosphotransacetylase and acetate kinase, converting acetyl-CoA to acetate with a concomitant substrate-level phosphorylation, were neither regulated by glucose nor by CcpA. CcpA directly repressed genes involved in utilization of amino acids as secondary carbon sources. Interestingly, the expression of a larger number of genes was found to be affected by ccpA inactivation in the absence of glucose than after glucose addition, suggesting that glucose-independent effects due to CcpA may have a particular impact in S. aureus. In the presence of glucose, CcpA was found to regulate the expression of genes involved in metabolism, but also that of genes coding for virulence determinants.
This study describes the CcpA regulon of exponentially growing S. aureus cells. As in other bacteria, CcpA of S. aureus seems to control a large regulon that comprises metabolic genes as well as virulence determinants that are affected in their expression by CcpA in a glucose-dependent as well as -independent manner.
PMCID: PMC2697999  PMID: 19450265
5.  A novel DNA-binding protein modulating methicillin resistance in Staphylococcus aureus 
BMC Microbiology  2009;9:15.
Methicillin resistance in Staphylococcus aureus is conferred by the mecA-encoded penicillin-binding protein PBP2a. Additional genomic factors are also known to influence resistance levels in strain specific ways, although little is known about their contribution to resistance phenotypes in clinical isolates. Here we searched for novel proteins binding to the mec operator, in an attempt to identify new factor(s) controlling methicillin resistance phenotypes.
Analysis of proteins binding to a DNA fragment containing the mec operator region identified a novel, putative helix-turn-helix DNA-binding protein, SA1665. Nonpolar deletion of SA1665, in heterogeneously methicillin resistant S. aureus (MRSA) of different genetic backgrounds, increased methicillin resistance levels in a strain dependent manner. This phenotype could be fully complemented by reintroducing SA1665 in trans. Northern and Western blot analyses, however, revealed that SA1665 had no visible influence on mecA transcription or amounts of PBP2a produced.
SA1665 is a new chromosomal factor which influences methicillin resistance in MRSA. Although SA1665 bound to the mecA promoter region, it had no apparent influence on mecA transcription or translation, suggesting that this predicted DNA-binding protein modulates resistance indirectly, most likely through the control of other genomic factors which contribute to resistance.
PMCID: PMC2658668  PMID: 19173709
6.  Variability in SCCmecN1 spreading among injection drug users in Zurich, Switzerland 
BMC Microbiology  2007;7:62.
An extremely low level methicillin resistant Staphylococcus aureus (MRSA) belonging to ST45, circulates among intravenous drug users in the Zurich area. This clone can be misinterpreted as an MSSA by phenotypic oxacillin resistance tests, although it carries a staphylococcal cassette chromosome mec (SCCmec) element encoding a functional mecA gene and it produces PBP2a.
This clone carried a new 45.7-kb element, termed SCCmecN1, containing a class B mec complex (mecA-ΔmecR1::IS1272), a truncated Tn4003 harbouring the dfrA gene, and a fusB1 gene, conferring methicillin, trimethoprim and low level fusidic acid resistance, respectively. In addition to the two insertion site sequences (ISS) framing the SCCmec, a third ISS (ISS*) was identified within the element. SCCmecN1 also harboured two distinct ccrAB complexes belonging to the class 4 subtype, both of which were shown to be active and to be able to excise the SCCmecN1 or parts thereof. Slight variations in the SmaI-PFGE pattern of the clinical MRSA isolates belonging to this clone were traced back to differences in the sizes of the SCCmec J2 regions and/or to a 6.4-kb deletion extending from ISS* to the right end ISS. This latter deletion led to a variant right SCCmec-chromosomal junction site. MRSA clones carrying the shorter SCCmec with the 6.4-kb deletion were usually ciprofloxacin resistant, while strains with the complete SCCmecN1 were co-trimoxazole resistant or had no additional resistances. This suggested that the genetic backbone of the host S. aureus, although identical by PFGE pattern, had at some stage diverged with one branch acquiring a sulfonomide resistance mutation and the other ciprofloxacin resistance.
This description of the structure and variations of SCCmecN1 will allow for quicker and easier molecular detection of this clone and monitoring of its spread.
PMCID: PMC3225876  PMID: 17605795

Results 1-6 (6)