PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Evaluation of data completeness in the electronic health record for the purpose of patient recruitment into clinical trials: a retrospective analysis of element presence 
Background
Computerized clinical trial recruitment support is one promising field for the application of routine care data for clinical research. The primary task here is to compare the eligibility criteria defined in trial protocols with patient data contained in the electronic health record (EHR). To avoid the implementation of different patient definitions in multi-site trials, all participating research sites should use similar patient data from the EHR. Knowledge of the EHR data elements which are commonly available from most EHRs is required to be able to define a common set of criteria. The objective of this research is to determine for five tertiary care providers the extent of available data compared with the eligibility criteria of randomly selected clinical trials.
Methods
Each participating study site selected three clinical trials at random. All eligibility criteria sentences were broken up into independent patient characteristics, which were then assigned to one of the 27 semantic categories for eligibility criteria developed by Luo et al. We report on the fraction of patient characteristics with corresponding structured data elements in the EHR and on the fraction of patients with available data for these elements. The completeness of EHR data for the purpose of patient recruitment is calculated for each semantic group.
Results
351 eligibility criteria from 15 clinical trials contained 706 patient characteristics. In average, 55% of these characteristics could be documented in the EHR. Clinical data was available for 64% of all patients, if corresponding data elements were available. The total completeness of EHR data for recruitment purposes is 35%. The best performing semantic groups were ‘age’ (89%), ‘gender’ (89%), ‘addictive behaviour’ (74%), ‘disease, symptom and sign’ (64%) and ‘organ or tissue status’ (61%). No data was available for 6 semantic groups.
Conclusions
There exists a significant gap in structure and content between data documented during patient care and data required for patient eligibility assessment. Nevertheless, EHR data on age and gender of the patient, as well as selected information on his disease can be complete enough to allow for an effective support of the manual screening process with an intelligent preselection of patients and patient data.
doi:10.1186/1472-6947-13-37
PMCID: PMC3606452  PMID: 23514203
Patient selection; Research subject recruitment; Clinical trials as topic; Electronic health records; Data quality; Information systems; Database
2.  Mapping Turnaround Times (TAT) to a Generic Timeline: A Systematic Review of TAT Definitions in Clinical Domains 
Background
Assessing turnaround times can help to analyse workflows in hospital information systems. This paper presents a systematic review of literature concerning different turnaround time definitions. Our objectives were to collect relevant literature with respect to this kind of process times in hospitals and their respective domains. We then analysed the existing definitions and summarised them in an appropriate format.
Methods
Our search strategy was based on Pubmed queries and manual reviews of the bibliographies of retrieved articles. Studies were included if precise definitions of turnaround times were available. A generic timeline was designed through a consensus process to provide an overview of these definitions.
Results
More than 1000 articles were analysed and resulted in 122 papers. Of those, 162 turnaround time definitions in different clinical domains were identified. Starting and end points vary between these domains. To illustrate those turnaround time definitions, a generic timeline was constructed using preferred terms derived from the identified definitions. The consensus process resulted in the following 15 terms: admission, order, biopsy/examination, receipt of specimen in laboratory, procedure completion, interpretation, dictation, transcription, verification, report available, delivery, physician views report, treatment, discharge and discharge letter sent. Based on this analysis, several standard terms for turnaround time definitions are proposed.
Conclusion
Using turnaround times to benchmark clinical workflows is still difficult, because even within the same clinical domain many different definitions exist. Mapping of turnaround time definitions to a generic timeline is feasible.
doi:10.1186/1472-6947-11-34
PMCID: PMC3125312  PMID: 21609424
Turnaround time; hospital information systems; cycle time; process time; timeline
3.  CIS-based registration of quality of life in a single source approach 
Background
Documenting quality of life (QoL) in routine medical care and using it both for treatment and for clinical research is not common, although such information is absolutely valuable for physicians and patients alike. We therefore aimed at developing an efficient method to integrate quality of life information into the clinical information system (CIS) and thus make it available for clinical care and secondary use.
Methods
We piloted our method in three different medical departments, using five different QoL questionnaires. In this setting we used structured interviews and onsite observations to perform workflow and form analyses. The forms and pertinent data reports were implemented using the integrated tools of the local CIS. A web-based application for mobile devices was developed based on XML schemata to facilitate data import into the CIS. Data exports of the CIS were analysed with statistical software to perform an analysis of data quality.
Results
The quality of life questionnaires are now regularly documented by patients and physicians. The resulting data is available in the Electronic Health Record (EHR) and can be used for treatment purposes and communication as well as research functionalities. The completion of questionnaires by the patients themselves using a mobile device (iPad) and the import of the respective data into the CIS forms were successfully tested in a pilot installation. The quality of data is rendered high by the use of automatic score calculations as well as the automatic creation of forms for follow-up documentation. The QoL data was exported to research databases for use in scientific analysis.
Conclusion
The CIS-based QoL is technically feasible, clinically accepted and provides an excellent quality of data for medical treatment and clinical research. Our approach with a commercial CIS and the web-based application is transferable to other sites.
doi:10.1186/1472-6947-11-26
PMCID: PMC3107772  PMID: 21510866
Quality of Life; Pruritus; Single Source; Clinical Information System; Medical Documentation; Mobile Device; Web-based Application; Patient Questionnaire; Data Import
4.  HIS-based Kaplan-Meier plots - a single source approach for documenting and reusing routine survival information 
Background
Survival or outcome information is important for clinical routine as well as for clinical research and should be collected completely, timely and precisely. This information is relevant for multiple usages including quality control, clinical trials, observational studies and epidemiological registries. However, the local hospital information system (HIS) does not support this documentation and therefore this data has to generated by paper based or spreadsheet methods which can result in redundantly documented data. Therefore we investigated, whether integrating the follow-up documentation of different departments in the HIS and reusing it for survival analysis can enable the physician to obtain survival curves in a timely manner and to avoid redundant documentation.
Methods
We analysed the current follow-up process of oncological patients in two departments (urology, haematology) with respect to different documentation forms. We developed a concept for comprehensive survival documentation based on a generic data model and implemented a follow-up form within the HIS of the University Hospital Muenster which is suitable for a secondary use of these data. We designed a query to extract the relevant data from the HIS and implemented Kaplan-Meier plots based on these data. To re-use this data sufficient data quality is needed. We measured completeness of forms with respect to all tumour cases in the clinic and completeness of documented items per form as incomplete information can bias results of the survival analysis.
Results
Based on the form analysis we discovered differences and concordances between both departments. We identified 52 attributes from which 13 were common (e.g. procedures and diagnosis dates) and were used for the generic data model. The electronic follow-up form was integrated in the clinical workflow. Survival data was also retrospectively entered in order to perform survival and quality analyses on a comprehensive data set. Physicians are now able to generate timely Kaplan-Meier plots on current data. We analysed 1029 follow-up forms of 965 patients with survival information between 1992 and 2010. Completeness of forms was 60.2%, completeness of items ranges between 94.3% and 98.5%. Median overall survival time was 16.4 years; median event-free survival time was 7.7 years.
Conclusion
It is feasible to integrate survival information into routine HIS documentation such that Kaplan-Meier plots can be generated directly and in a timely manner.
doi:10.1186/1472-6947-11-11
PMCID: PMC3053219  PMID: 21324182
5.  Clinical map document based on XML (cMDX): document architecture with mapping feature for reporting and analysing prostate cancer in radical prostatectomy specimens 
Background
The pathology report of radical prostatectomy specimens plays an important role in clinical decisions and the prognostic evaluation in Prostate Cancer (PCa). The anatomical schema is a helpful tool to document PCa extension for clinical and research purposes. To achieve electronic documentation and analysis, an appropriate documentation model for anatomical schemas is needed. For this purpose we developed cMDX.
Methods
The document architecture of cMDX was designed according to Open Packaging Conventions by separating the whole data into template data and patient data. Analogue custom XML elements were considered to harmonize the graphical representation (e.g. tumour extension) with the textual data (e.g. histological patterns). The graphical documentation was based on the four-layer visualization model that forms the interaction between different custom XML elements. Sensible personal data were encrypted with a 256-bit cryptographic algorithm to avoid misuse. In order to assess the clinical value, we retrospectively analysed the tumour extension in 255 patients after radical prostatectomy.
Results
The pathology report with cMDX can represent pathological findings of the prostate in schematic styles. Such reports can be integrated into the hospital information system. "cMDX" documents can be converted into different data formats like text, graphics and PDF. Supplementary tools like cMDX Editor and an analyser tool were implemented. The graphical analysis of 255 prostatectomy specimens showed that PCa were mostly localized in the peripheral zone (Mean: 73% ± 25). 54% of PCa showed a multifocal growth pattern.
Conclusions
cMDX can be used for routine histopathological reporting of radical prostatectomy specimens and provide data for scientific analysis.
doi:10.1186/1472-6947-10-71
PMCID: PMC2995775  PMID: 21078179
6.  HIS-based electronic documentation can significantly reduce the time from biopsy to final report for prostate tumours and supports quality management as well as clinical research 
Background
Timely and accurate information is important to guide the medical treatment process. We developed, implemented and assessed an order-entry system to support documentation of prostate histologies involving urologists, pathologists and physicians in private practice.
Methods
We designed electronic forms for histological prostate biopsy reports in our hospital information system (HIS). These forms are created by urologists and sent electronically to pathologists. Pathological findings are entered into the system and sent back to the urologists. We assessed time from biopsy to final report (TBF) and compared pre-implementation phase (paper-based forms) and post-implementation phase. In addition we analysed completeness of the electronic data.
Results
We compared 87 paper-based with 86 electronic cases. Using electronic forms within the HIS decreases time span from biopsy to final report by more than one day per patient (p < 0.0001). Beyond the optimized workflow we observed a good acceptance because physicians were already familiar with the HIS. The possibility to use these routine data for quality management and research purposes is an additional important advantage of the electronic system.
Conclusion
Electronic documentation can significantly reduce the time from biopsy to final report of prostate biopsy results and generates a reliable basis for quality management and research purposes.
doi:10.1186/1472-6947-9-5
PMCID: PMC2651130  PMID: 19154600
7.  Benchmarking of hospital information systems: Monitoring of discharge letters and scheduling can reveal heterogeneities and time trends 
Background
Monitoring of hospital information system (HIS) usage can provide insights into best practices within a hospital and help to assess time trends. In terms of effort and cost of benchmarking, figures derived automatically from the routine HIS system are preferable to manual methods like surveys, in particular for repeated analysis.
Methods
Due to relevance for quality management and efficient resource utilization we focused on time-to-completion of discharge letters (assessed by CT-plots) and usage of patient scheduling. We analyzed these parameters monthly during one year at a major university hospital in Germany.
Results
We found several distinct patterns of discharge letter documentation indicating a large heterogeneity of HIS usage between different specialties (completeness 51 – 99%, delays 0 – 90 days). Overall usage of scheduling increased during the observation period by 62%, but again showed a considerable variation between departments.
Conclusion
Regular monitoring of HIS key figures can contribute to a continuous HIS improvement process.
doi:10.1186/1472-6947-8-15
PMCID: PMC2374775  PMID: 18423046
8.  Interactive decision support in hepatic surgery 
Background
Hepatic surgery is characterized by complicated operations with a significant peri- and postoperative risk for the patient. We developed a web-based, high-granular research database for comprehensive documentation of all relevant variables to evaluate new surgical techniques.
Methods
To integrate this research system into the clinical setting, we designed an interactive decision support component. The objective is to provide relevant information for the surgeon and the patient to assess preoperatively the risk of a specific surgical procedure.
Based on five established predictors of patient outcomes, the risk assessment tool searches for similar cases in the database and aggregates the information to estimate the risk for an individual patient.
Results
The physician can verify the analysis and exclude manually non-matching cases according to his expertise. The analysis is visualized by means of a Kaplan-Meier plot.
To evaluate the decision support component we analyzed data on 165 patients diagnosed with hepatocellular carcinoma (period 1996–2000). The similarity search provides a two-peak distribution indicating there are groups of similar patients and singular cases which are quite different to the average. The results of the risk estimation are consistent with the observed survival data, but must be interpreted with caution because of the limited number of matching reference cases.
Conclusion
Critical issues for the decision support system are clinical integration, a transparent and reliable knowledge base and user feedback.
doi:10.1186/1472-6947-2-5
PMCID: PMC113749  PMID: 12003639

Results 1-8 (8)