PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Gastric cancers of Western European and African patients show different patterns of genomic instability 
Background
Infection with H. pylori is important in the etiology of gastric cancer. Gastric cancer is infrequent in Africa, despite high frequencies of H. pylori infection, referred to as the African enigma. Variation in environmental and host factors influencing gastric cancer risk between different populations have been reported but little is known about the biological differences between gastric cancers from different geographic locations. We aim to study genomic instability patterns of gastric cancers obtained from patients from United Kingdom (UK) and South Africa (SA), in an attempt to support the African enigma hypothesis at the biological level.
Methods
DNA was isolated from 67 gastric adenocarcinomas, 33 UK patients, 9 Caucasian SA patients and 25 native SA patients. Microsatellite instability and chromosomal instability were analyzed by PCR and microarray comparative genomic hybridization, respectively. Data was analyzed by supervised univariate and multivariate analyses as well as unsupervised hierarchical cluster analysis.
Results
Tumors from Caucasian and native SA patients showed significantly more microsatellite instable tumors (p < 0.05). For the microsatellite stable tumors, geographical origin of the patients correlated with cluster membership, derived from unsupervised hierarchical cluster analysis (p = 0.001). Several chromosomal alterations showed significantly different frequencies in tumors from UK patients and native SA patients, but not between UK and Caucasian SA patients and between native and Caucasian SA patients.
Conclusions
Gastric cancers from SA and UK patients show differences in genetic instability patterns, indicating possible different biological mechanisms in patients from different geographical origin. This is of future clinical relevance for stratification of gastric cancer therapy.
doi:10.1186/1755-8794-4-7
PMCID: PMC3033789  PMID: 21226972
2.  NMD inhibition fails to identify tumour suppressor genes in microsatellite stable gastric cancer cell lines 
BMC Medical Genomics  2009;2:39.
Background
Gastric cancers frequently show chromosomal alterations which can cause activation of oncogenes, and/or inactivation of tumour suppressor genes. In gastric cancer several chromosomal regions are described to be frequently lost, but for most of the regions, no tumour suppressor genes have been identified yet. The present study aimed to identify tumour suppressor genes inactivated by nonsense mutation and deletion in gastric cancer by means of GINI (gene identification by nonsense mediated decay inhibition) and whole genome copy number analysis.
Methods
Two non-commercial gastric cancer cell lines, GP202 and IPA220, were transfected with siRNA directed against UPF1, to specifically inhibit the nonsense mediated decay (NMD) pathway, and with siRNA directed against non-specific siRNA duplexes (CVII) as a control. Microarray expression experiments were performed in triplicate on 4 × 44 K Agilent arrays by hybridizing RNA from UPF1-transfected cells against non-specific CVII-transfected cells. In addition, array CGH of the two cell lines was performed on 4 × 44K agilent arrays to obtain the DNA copy number profiles. Mutation analysis of GINI candidates was performed by sequencing.
Results
UPF1 expression was reduced for >70% and >80% in the GP202 and IPA220 gastric cancer cell lines, respectively. Integration of array CGH and microarray expression data provided a list of 134 and 50 candidate genes inactivated by nonsense mutation and deletion for GP202 and IPA220, respectively. We selected 12 candidate genes for mutation analysis. Of these, sequence analysis was performed on 11 genes. One gene, PLA2G4A, showed a silent mutation, and in two genes, CTSA and PTPRJ, missense mutations were detected. No nonsense mutations were detected in any of the 11 genes tested.
Conclusion
Although UPF1 was substantially repressed, thus resulting in the inhibition of the NMD system, we did not find genes inactivated by nonsense mutations. Our results show that the GINI strategy leads to a high number of false positives.
doi:10.1186/1755-8794-2-39
PMCID: PMC2709900  PMID: 19563644
3.  Genomic profiling identifies common HPV-associated chromosomal alterations in squamous cell carcinomas of cervix and head and neck 
BMC Medical Genomics  2009;2:32.
Background
It is well known that a persistent infection with high-risk human papillomavirus (hrHPV) is causally involved in the development of squamous cell carcinomas of the uterine cervix (CxSCCs) and a subset of SCCs of the head and neck (HNSCCs). The latter differ from hrHPV-negative HNSCCs at the clinical and molecular level.
Methods
To determine whether hrHPV-associated SCCs arising from different organs have specific chromosomal alterations in common, we compared genome-wide chromosomal profiles of 10 CxSCCs (all hrHPV-positive) with 12 hrHPV-positive HNSCCs and 30 hrHPV-negative HNSCCs. Potential organ-specific alterations and alterations shared by SCCs in general were investigated as well.
Results
Unsupervised hierarchical clustering resulted in one mainly hrHPV-positive and one mainly hrHPV-negative cluster. Interestingly, loss at 13q and gain at 20q were frequent in HPV-positive carcinomas of both origins, but uncommon in hrHPV-negative HNSCCs, indicating that these alterations are associated with hrHPV-mediated carcinogenesis. Within the group of hrHPV-positive carcinomas, HNSCCs more frequently showed gains of multiple regions at 8q whereas CxSCCs more often showed loss at 17p. Finally, gains at 3q24-29 and losses at 11q22.3-25 were frequent (>50%) in all sample groups.
Conclusion
In this study hrHPV-specific, organ-specific, and pan-SCC chromosomal alterations were identified. The existence of hrHPV-specific alterations in SCCs of different anatomical origin, suggests that these alterations are crucial for hrHPV-mediated carcinogenesis.
doi:10.1186/1755-8794-2-32
PMCID: PMC2698908  PMID: 19486517

Results 1-3 (3)