PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  PhenX RISING: real world implementation and sharing of PhenX measures 
BMC Medical Genomics  2014;7:16.
Background
The purpose of this manuscript is to describe the PhenX RISING network and the site experiences in the implementation of PhenX measures into ongoing population-based genomic studies.
Methods
Eighty PhenX measures were implemented across the seven PhenX RISING groups, thirty-three of which were used at more than two sites, allowing for cross-site collaboration. Each site used between four and 37 individual measures and five of the sites are validating the PhenX measures through comparison with other study measures. Self-administered and computer-based administration modes are being evaluated at several sites which required changes to the original PhenX Toolkit protocols. A network-wide data use agreement was developed to facilitate data sharing and collaboration.
Results
PhenX Toolkit measures have been collected for more than 17,000 participants across the PhenX RISING network. The process of implementation provided information that was used to improve the PhenX Toolkit. The Toolkit was revised to allow researchers to select self- or interviewer administration when creating the data collection worksheets and ranges of specimens necessary to run biological assays has been added to the Toolkit.
Conclusions
The PhenX RISING network has demonstrated that the PhenX Toolkit measures can be implemented successfully in ongoing genomic studies. The next step will be to conduct gene/environment studies.
doi:10.1186/1755-8794-7-16
PMCID: PMC3994539  PMID: 24650325
PhenX; Phenotype; Epidemiology; Risk factors; Harmonization
2.  Validation of PhenX measures in the personalized medicine research project for use in gene/environment studies 
Background
The purpose of this paper is to describe the data collection efforts and validation of PhenX measures in the Personalized Medicine Research Project (PMRP) cohort.
Methods
Thirty-six measures were chosen from the PhenX Toolkit within the following domains: demographics; anthropometrics; alcohol, tobacco and other substances; cardiovascular; environmental exposures; cancer; psychiatric; neurology; and physical activity and physical fitness. Eligibility criteria for the current study included: living PMRP subjects with known addresses who consented to future contact and were not currently living in a nursing home, available GWAS data from eMERGE I for subjects where age-related cataract, HDL, dementia and resistant hypertension were the primary phenotypes, thus biasing the sample to the older PMRP participants. The questionnaires were mailed twice. Data from the PhenX measures were compared with information from PMRP questionnaires and data from Marshfield Clinic electronic medical records.
Results
Completed PhenX questionnaires were returned by 2271 subjects for a final response rate of 70%. The mean age reported on the PhenX questionnaire (73.1 years) was greater than the PMRP questionnaire (64.8 years) because the data were collected at different time points. The mean self-reported weight, and subsequently calculated BMI, were less on the PhenX survey than the measured values at the time of enrollment into PMRP (PhenX means 173.5 pounds and BMI 28.2 kg/m2 versus PMRP 182.9 pounds and BMI 29.6 kg/m2). There was 95.3% agreement between the two questionnaires about having ever smoked at least 100 cigarettes. 139 (6.2%) of subjects indicated on the PhenX questionnaire that they had been told they had a stroke. Of them, only 15 (10.8%) had no electronic indication of a prior stroke or TIA. All of the age-and gender-specific 95% confidence limits around point estimates for major depressive episodes overlap and show that 31% of women aged 50–64 reported symptoms associated with a major depressive episode.
Conclusions
The approach employed resulted in a high response rate and valuable data for future gene/environment analyses. These results and high response rate highlight the utility of the PhenX Toolkit to collect valid phenotypic data that can be shared across groups to facilitate gene/environment studies.
doi:10.1186/1755-8794-7-3
PMCID: PMC3896802  PMID: 24423110
3.  The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies 
BMC Medical Genomics  2011;4:13.
Introduction
The eMERGE (electronic MEdical Records and GEnomics) Network is an NHGRI-supported consortium of five institutions to explore the utility of DNA repositories coupled to Electronic Medical Record (EMR) systems for advancing discovery in genome science. eMERGE also includes a special emphasis on the ethical, legal and social issues related to these endeavors.
Organization
The five sites are supported by an Administrative Coordinating Center. Setting of network goals is initiated by working groups: (1) Genomics, (2) Informatics, and (3) Consent & Community Consultation, which also includes active participation by investigators outside the eMERGE funded sites, and (4) Return of Results Oversight Committee. The Steering Committee, comprised of site PIs and representatives and NHGRI staff, meet three times per year, once per year with the External Scientific Panel.
Current progress
The primary site-specific phenotypes for which samples have undergone genome-wide association study (GWAS) genotyping are cataract and HDL, dementia, electrocardiographic QRS duration, peripheral arterial disease, and type 2 diabetes. A GWAS is also being undertaken for resistant hypertension in ≈2,000 additional samples identified across the network sites, to be added to data available for samples already genotyped. Funded by ARRA supplements, secondary phenotypes have been added at all sites to leverage the genotyping data, and hypothyroidism is being analyzed as a cross-network phenotype. Results are being posted in dbGaP. Other key eMERGE activities include evaluation of the issues associated with cross-site deployment of common algorithms to identify cases and controls in EMRs, data privacy of genomic and clinically-derived data, developing approaches for large-scale meta-analysis of GWAS data across five sites, and a community consultation and consent initiative at each site.
Future activities
Plans are underway to expand the network in diversity of populations and incorporation of GWAS findings into clinical care.
Summary
By combining advanced clinical informatics, genome science, and community consultation, eMERGE represents a first step in the development of data-driven approaches to incorporate genomic information into routine healthcare delivery.
doi:10.1186/1755-8794-4-13
PMCID: PMC3038887  PMID: 21269473
4.  Development of a fingerprinting panel using medically relevant polymorphisms 
BMC Medical Genomics  2009;2:17.
Background
For population based biorepositories to be of use, rigorous quality control and assurance must be maintained. We have designed and validated a panel of polymorphisms for individual sample identification consisting of 36 common polymorphisms that have been implicated in a wide range of diseases and an additional sex marker. This panel uniquely identifies our biorepository of approximately 20,000 samples and would continue to uniquely identify samples in biorepositories of over 100 million samples.
Methods
A panel of polymorphisms associated with at least one disease state in multiple populations was constructed using a cut-off of 0.20 or greater confirmed minor allele frequency in a European Caucasian population. The fingerprinting assay was tested using the MALDI-TOF mass spectrometry method of allele determination on a Sequenom platform with a panel of 28 Caucasian HapMap samples; the results were compared with known genotypes to ensure accuracy. The frequencies of the alleles were compared to the expected frequencies from dbSNP and any genotype that did not achieve Hardy Weinberg equilibrium was excluded from the final assay.
Results
The final assay consisted of the AMG sex marker and 36 medically relevant polymorphisms with representation on each chromosome, encompassing polymorphisms on both the Illumina 550K bead array and the Affymetrix 6.0 chip (with over a million polymorphisms) platform. The validated assay has a P(ID) of 6.132 × 10-15 and a Psib(ID) of 3.077 × 10-8. This assay allows unique identification of our biorepository of 20,000 individuals as well and ensures that as we continue to recruit individuals they can be uniquely fingerprinted. In addition, diseases such as cancer, heart disease diabetes, obesity, and respiratory disease are well represented in the fingerprinting assay.
Conclusion
The polymorphisms in this panel are currently represented on a number of common genotyping platforms making QA/QC flexible enough to accommodate a large number of studies. In addition, this panel can serve as a resource for investigators who are interested in the effects of disease in a population, particularly for common diseases.
doi:10.1186/1755-8794-2-17
PMCID: PMC2684120  PMID: 19379518

Results 1-4 (4)