PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
2.  Catechol-O-Methyltransferase (COMT) Val108/158 Met polymorphism does not modulate executive function in children with ADHD 
BMC Medical Genetics  2004;5:30.
Background
An association has been observed between the catechol-O-methyltransferase (COMT) gene, the predominant means of catecholamine catabolism within the prefrontal cortex (PFC), and neuropsychological task performance in healthy and schizophrenic adults. Since several of the cognitive functions typically deficient in children with Attention Deficit Hyperactivity Disorder (ADHD) are mediated by prefrontal dopamine (DA) mechanisms, we investigated the relationship between a functional polymorphism of the COMT gene and neuropsychological task performance in these children.
Methods
The Val108/158 Met polymorphism of the COMT gene was genotyped in 118 children with ADHD (DSM-IV). The Wisconsin Card Sorting Test (WCST), Tower of London (TOL), and Self-Ordered Pointing Task (SOPT) were employed to evaluate executive functions. Neuropsychological task performance was compared across genotype groups using analysis of variance.
Results
ADHD children with the Val/Val, Val/Met and Met/Met genotypes were similar with regard to demographic and clinical characteristics. No genotype effects were observed for WCST standardized perseverative error scores [F2,97 = 0.67; p > 0.05], TOL standardized scores [F2,99 = 0.97; p > 0.05], and SOPT error scores [F2,108 = 0.62; p > 0.05].
Conclusions
Contrary to the observed association between WCST performance and the Val108/158 Met polymorphism of the COMT gene in both healthy and schizophrenic adults, this polymorphism does not appear to modulate executive functions in children with ADHD.
doi:10.1186/1471-2350-5-30
PMCID: PMC544598  PMID: 15613245
3.  Allele frequencies of hemojuvelin gene (HJV) I222N and G320V missense mutations in white and African American subjects from the general Alabama population 
BMC Medical Genetics  2004;5:29.
Background
Homozygosity or compound heterozygosity for coding region mutations of the hemojuvelin gene (HJV) in whites is a cause of early age-of-onset iron overload (juvenile hemochromatosis), and of hemochromatosis phenotypes in some young or middle-aged adults. HJV coding region mutations have also been identified recently in African American primary iron overload and control subjects. Primary iron overload unexplained by typical hemochromatosis-associated HFE genotypes is common in white and black adults in Alabama, and HJV I222N and G320V were detected in a white Alabama juvenile hemochromatosis index patient. Thus, we estimated the frequency of the HJV missense mutations I222N and G320V in adult whites and African Americans from Alabama general population convenience samples.
Methods
We evaluated the genomic DNA of 241 Alabama white and 124 African American adults who reported no history of hemochromatosis or iron overload to detect HJV missense mutations I222N and G320V using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Analysis for HJV I222N was performed in 240 whites and 124 African Americans. Analysis for HJV G320V was performed in 241 whites and 118 African Americans.
Results
One of 240 white control subjects was heterozygous for HJV I222N; she was also heterozygous for HFE C282Y, but had normal serum iron measures and bone marrow iron stores. HJV I222N was not detected in 124 African American subjects. HJV G320V was not detected in 241 white or 118 African American subjects.
Conclusions
HJV I222N and G320V are probably uncommon causes or modifiers of primary iron overload in adult whites and African Americans in Alabama. Double heterozygosity for HJV I222N and HFE C282Y may not promote increased iron absorption.
doi:10.1186/1471-2350-5-29
PMCID: PMC544351  PMID: 15610558
4.  Men's values-based factors on prostate cancer risk genetic testing: A telephone survey 
BMC Medical Genetics  2004;5:28.
Background
While a definitive genetic test for Hereditary Prostate Cancer (HPC) is not yet available, future HPC risk testing may become available. Past survey data have shown high interest in HPC testing, but without an in-depth analysis of its underlying rationale to those considering it.
Methods
Telephone computer-assisted interviews of 400 men were conducted in a large metropolitan East-coast city, with subsequent development of psychometric scales and their correlation with intention to receive testing.
Results
Approximately 82% of men interviewed expressed that they "probably" or "definitely" would get genetic testing for prostate cancer risk if offered now. Factor analysis revealed four distinct, meaningful factors for intention to receive genetic testing for prostate cancer risk. These factors reflected attitudes toward testing and were labeled "motivation to get testing," "consequences and actions after knowing the test result," "psychological distress," and "beliefs of favorable outcomes if tested" (α = 0.89, 0.73, 0.73, and 0.60, respectively). These factors accounted for 70% of the total variability. The domains of motivation (directly), consequences (inversely), distress (inversely), and positive expectations (directly) all correlated with intention to receive genetic testing (p < 0.001).
Conclusions
Men have strong attitudes favoring genetic testing for prostate cancer risk. The factors most associated with testing intention include those noted in past cancer genetics studies, and also highlights the relevance in considering one's motivation and perception of positive outcomes in genetic decision-making.
doi:10.1186/1471-2350-5-28
PMCID: PMC544862  PMID: 15588314
5.  Neural network analysis in pharmacogenetics of mood disorders 
BMC Medical Genetics  2004;5:27.
Background
The increasing number of available genotypes for genetic studies in humans requires more advanced techniques of analysis. We previously reported significant univariate associations between gene polymorphisms and antidepressant response in mood disorders. However the combined analysis of multiple gene polymorphisms and clinical variables requires the use of non linear methods.
Methods
In the present study we tested a neural network strategy for a combined analysis of two gene polymorphisms. A Multi Layer Perceptron model showed the best performance and was therefore selected over the other networks. One hundred and twenty one depressed inpatients treated with fluvoxamine in the context of previously reported pharmacogenetic studies were included. The polymorphism in the transcriptional control region upstream of the 5HTT coding sequence (SERTPR) and in the Tryptophan Hydroxylase (TPH) gene were analysed simultaneously.
Results
A multi layer perceptron network composed by 1 hidden layer with 7 nodes was chosen. 77.5 % of responders and 51.2% of non responders were correctly classified (ROC area = 0.731 – empirical p value = 0.0082). Finally, we performed a comparison with traditional techniques. A discriminant function analysis correctly classified 34.1 % of responders and 68.1 % of non responders (F = 8.16 p = 0.0005).
Conclusions
Overall, our findings suggest that neural networks may be a valid technique for the analysis of gene polymorphisms in pharmacogenetic studies. The complex interactions modelled through NN may be eventually applied at the clinical level for the individualized therapy.
doi:10.1186/1471-2350-5-27
PMCID: PMC539307  PMID: 15588300
6.  CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity 
BMC Medical Genetics  2004;5:26.
Background
Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease.
Methods
The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%).
Results
PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene.
Conclusions
CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity.
doi:10.1186/1471-2350-5-26
PMCID: PMC526769  PMID: 15507145
7.  HLA haplotypes associated with hemochromatosis mutations in the Spanish population 
BMC Medical Genetics  2004;5:25.
Background
The present study is an analysis of the frequencies of HLA-A and -B antigens and HLA haplotypes in two groups of individuals homozygous for the two main HFE mutations (C282Y and H63D) and a group heterozygous for the S65C mutation.
Methods
The study population includes: 1123 healthy individuals, 100 homozygous for the C282Y mutation, 138 homozygous for the H63D mutation and 17 heterozygous for the S65C mutation. HFE and HLA alleles were detected using DNA-based and microlymphocytotoxicity techniques respectively.
Results
An expected significant association between C282Y and the HLA-A3/B7 haplotype was found, but other HLA haplotypes carrying the -A3 antigen were found: HLA-A3/B62 and HLA-A3/B44. Also, a significant association between H63D mutation and HLA-A29/B44 haplotype was found, and again other HLA haplotypes carrying the HLA-A29 antigen were also found: HLA-A29/B14 and HLA-A29/B62. In addition, the S65C mutation seems to be associated with a HLA haplotype carrying the HLA-A26 antigen.
Conclusion
These findings clearly suggest that HLA-A3/B7 and HLA-A29/B44 are the ancestral haplotypes from which the C282Y and H63D mutations originated, respectively. The frequencies of these mutations in different populations, their geographical distribution, and the degree of the statistical association to the ancestral haplotypes, suggest that the H63D mutation must have occurred earlier than the C282Y mutation.
doi:10.1186/1471-2350-5-25
PMCID: PMC529258  PMID: 15498100
8.  Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan 
BMC Medical Genetics  2004;5:24.
Background
Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10). TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3.
Methods
We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3.
Results
We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues.
Conclusion
Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449) of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.
doi:10.1186/1471-2350-5-24
PMCID: PMC523852  PMID: 15447792
9.  What is the impact of the ACE gene insertion/deletion (I/D) polymorphism on the clinical effectiveness and adverse events of ACE inhibitors? – Protocol of a systematic review 
BMC Medical Genetics  2004;5:23.
Background
The Angiotensin Converting Enzyme (ACE) insertion/deletion (I/D) polymorphism has received much attention in pharmacogenetic research because observed variations in response to ACE inhibitors might be associated with this polymorphism. Pharmacogenetic testing raises the hope to individualise ACE inhibitor therapy in order to optimise its effectiveness and to reduce adverse effects for genetically different subgroups. However, the extent of its effect modification in patients treated with ACE inhibitors remains inconclusive. Therefore our objective is to quantify the effect modification of the insertion/deletion polymorphism of the angiotensin converting enzyme gene on any surrogate and clinically relevant parameters in patients with cardiovascular diseases, diabetes, renal transplantation and/or renal failure.
Methods
Systematic Review. We will perform literature searches in six electronic databases to identify randomised controlled trials comparing the effectiveness and occurrence of adverse events of ACE inhibitor therapy against placebo or any active treatment stratified by the I/D gene polymorphism. In addition, authors of trials, experts in pharmacogenetics and pharmaceutical companies will be contacted for further published or unpublished data. Hand searching will be accomplished by reviewing the reference lists of all included studies. The methodological quality of included papers will be assessed. Data analyses will be performed in clinically and methodologically cogent subgroups. The results of the quantitative assessment will be pooled statistically where appropriate to produce an estimate of the differences in the effect of ACE inhibitors observed between the three ACE genotypes.
Discussion
This protocol describes a strategy to quantify the effect modification of the ACE polymorphism on ACE inhibitors in relevant clinical domains using meta-epidemiological research methods. The results may provide evidence for the usefulness of pharmacogenetic testing for individualised ACE inhibitor therapy.
doi:10.1186/1471-2350-5-23
PMCID: PMC518966  PMID: 15361261
10.  TM4SF10 gene sequencing in XLMR patients identifies common polymorphisms but no disease-associated mutation 
BMC Medical Genetics  2004;5:22.
Background
The TM4SF10 gene encodes a putative four-transmembrane domains protein of unknown function termed Brain Cell Membrane Protein 1 (BCMP1), and is abundantly expressed in the brain. This gene is located on the short arm of human chromosome X at p21.1. The hypothesis that mutations in the TM4SF10 gene are associated with impaired brain function was investigated by sequencing the gene in individuals with hereditary X-linked mental retardation (XLMR).
Methods
The coding region (543 bp) of TM4SF10, including intronic junctions, and the long 3' untranslated region (3 233 bp), that has been conserved during evolution, were sequenced in 16 male XLMR patients from 14 unrelated families with definite, or suggestive, linkage to the TM4SF10 gene locus, and in 5 normal males.
Results
Five sequence changes were identified but none was found to be associated with the disease. Two of these changes correspond to previously known SNPs, while three other were novel SNPs in the TM4SF10 gene.
Conclusion
We have investigated the majority of the known MRX families linked to the TM4SF10 gene region. In the absence of mutations detected, our study indicates that alterations of TM4SF10 are not a frequent cause of XLMR.
doi:10.1186/1471-2350-5-22
PMCID: PMC517934  PMID: 15345028
11.  A 4q35.2 subtelomeric deletion identified in a screen of patients with co-morbid psychiatric illness and mental retardation 
BMC Medical Genetics  2004;5:21.
Background
Cryptic structural abnormalities within the subtelomeric regions of chromosomes have been the focus of much recent research because of their discovery in a percentage of people with mental retardation (UK terminology: learning disability). These studies focused on subjects (largely children) with various severities of intellectual impairment with or without additional physical clinical features such as dysmorphisms. However it is well established that prevalence of schizophrenia is around three times greater in those with mild mental retardation. The rates of bipolar disorder and major depressive disorder have also been reported as increased in people with mental retardation. We describe here a screen for telomeric abnormalities in a cohort of 69 patients in which mental retardation co-exists with severe psychiatric illness.
Methods
We have applied two techniques, subtelomeric fluorescence in situ hybridisation (FISH) and multiplex amplifiable probe hybridisation (MAPH) to detect abnormalities in the patient group.
Results
A subtelomeric deletion was discovered involving loss of 4q in a patient with co-morbid schizoaffective disorder and mental retardation.
Conclusion
The precise region of loss has been defined allowing us to identify genes that may contribute to the clinical phenotype through hemizygosity. Interestingly, the region of 4q loss exactly matches that linked to bipolar affective disorder in a large multiply affected Australian kindred.
doi:10.1186/1471-2350-5-21
PMCID: PMC515177  PMID: 15310400
12.  Candidate high myopia loci on chromosomes 18p and 12q do not play a major role in susceptibility to common myopia 
BMC Medical Genetics  2004;5:20.
Background
To determine whether previously reported loci predisposing to nonsyndromic high myopia show linkage to common myopia in pedigrees from two ethnic groups: Ashkenazi Jewish and Amish. We hypothesized that these high myopia loci might exhibit allelic heterogeneity and be responsible for moderate /mild or common myopia.
Methods
Cycloplegic and manifest refraction were performed on 38 Jewish and 40 Amish families. Individuals with at least -1.00 D in each meridian of both eyes were classified as myopic. Genomic DNA was genotyped with 12 markers on chromosomes 12q21-23 and 18p11.3. Parametric and nonparametric linkage analyses were conducted to determine whether susceptibility alleles at these loci are important in families with less severe, clinical forms of myopia.
Results
There was no strong evidence of linkage of common myopia to these candidate regions: all two-point and multipoint heterogeneity LOD scores were < 1.0 and non-parametric linkage p-values were > 0.01. However, one Amish family showed slight evidence of linkage (LOD>1.0) on 12q; another 3 Amish families each gave LOD >1.0 on 18p; and 3 Jewish families each gave LOD >1.0 on 12q.
Conclusions
Significant evidence of linkage (LOD> 3) of myopia was not found on chromosome 18p or 12q loci in these families. These results suggest that these loci do not play a major role in the causation of common myopia in our families studied.
doi:10.1186/1471-2350-5-20
PMCID: PMC512288  PMID: 15291966
13.  Are p.I148T, p.R74W and p.D1270N cystic fibrosis causing mutations ? 
BMC Medical Genetics  2004;5:19.
Background
To contribute further to the classification of three CFTR amino acid changes (p.I148T, p.R74W and p.D1270N) either as CF or CBAVD-causing mutations or as neutral variations.
Methods
The CFTR genes from individuals who carried at least one of these changes were extensively scanned by a well established DGGE assay followed by direct sequencing and familial segregation analysis of mutations and polymorphisms.
Results
Four CF patients (out of 1238) originally identified as carrying the p.I148T mutation in trans with a CF mutation had a second mutation (c.3199del6 or a novel mutation c.3395insA) on the p.I148T allele. We demonstrate here that the deletion c.3199del6 can also be associated with CF without p.I148T. Three CBAVD patients originally identified with the complex allele p.R74W-p.D1270N were also carrying p.V201M on this allele, by contrast with non CF or asymptomatic individuals including the mother of a CF child, who were carrying p.R74W-p.D1270N alone.
Conclusion
These findings question p.I148T or p.R74W-p.D1270N as causing by themselves CF or CBAVD and emphazises the necessity to perform a complete scanning of CFTR genes and to assign the parental alleles when novel missense mutations are identified.
doi:10.1186/1471-2350-5-19
PMCID: PMC509248  PMID: 15287992
14.  The impact of population heterogeneity on risk estimation in genetic counseling 
BMC Medical Genetics  2004;5:18.
Background
Genetic counseling has been an important tool for evaluating and communicating disease susceptibility for decades, and it has been applied to predict risks for a wide class of hereditary disorders. Most diseases are complex in nature and are affected by multiple genes and environmental conditions; it is highly likely that DNA tests alone do not define all the genetic factors responsible for a disease, so that persons classified into the same risk group by DNA testing actually could have different disease susceptibilities. Ignorance of population heterogeneity may lead to biased risk estimates, whereas additional information on population heterogeneity may improve the precision of such estimates.
Methods
Although DNA tests are widely used, few studies have investigated the accuracy of the predicted risks. We examined the impact of population heterogeneity on predicted disease risks by simulation of three different heterogeneity scenarios and studied the precision and accuracy of the risks estimated from a logistic regression model that ignored population heterogeneity. Moreover, we also incorporated information about population heterogeneity into our original model and investigated the resulting improvement in the accuracy of risk estimation.
Results
We found that heterogeneity in one or more categories could lead to biased estimates not only in the "contaminated" categories but also in other homogeneous categories. Incorporating information about population heterogeneity into the original model greatly improved the accuracy of risk estimation.
Conclusions
Our findings imply that without thorough knowledge about genetic basis of the disease, risks estimated from DNA tests may be misleading. Caution should be taken when evaluating the predicted risks obtained from genetic counseling. On the other hand, the improved accuracy of risk estimates after incorporating population heterogeneity information into the model did point out a promising direction for genetic counseling, since more and more new techniques are being invented and disease etiology is being better understood.
doi:10.1186/1471-2350-5-18
PMCID: PMC449710  PMID: 15228628
15.  Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment 
BMC Medical Genetics  2004;5:17.
Background
Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes.
Methods
We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients.
Results
Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment.
Conclusions
Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.
doi:10.1186/1471-2350-5-17
PMCID: PMC455682  PMID: 15219231
16.  HNPCC: Six new pathogenic mutations 
BMC Medical Genetics  2004;5:16.
Background
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR). HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6.
Methods
Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out.
Results
We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6) resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702]), three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298]) and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]). All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H).
Conclusions
HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.
doi:10.1186/1471-2350-5-16
PMCID: PMC446196  PMID: 15217520
17.  Analysis of polymorphic TGFB1 codons 10, 25, and 263 in a German patient group with non-syndromic cleft lip, alveolus, and palate compared with healthy adults 
BMC Medical Genetics  2004;5:15.
Background
Clefts of the lip, alveolus, and palate (CLPs) rank among the most frequent and significant congenital malformations. Leu10Pro and Arg25Pro polymorphisms in the precursor region and Thr263Ile polymorphism in the prodomain of the transforming growth factor β1 (TGF-β1) gene have proved to be crucial to predisposition of several disorders.
Methods
In this study, polymorphism analysis was performed by real-time polymerase chain reaction (LightCycler) and TGF-β1 levels determined by enzyme-linked immunosorbent assay.
Results
Only 2/60 Caucasian non-syndromic patients with CLP (3.3%) carried the Arg25Pro and another 2/60 patients (3.3%) the Thr263Ile genotypes, whereas, in a control group of 60 healthy Caucasian blood donors, these heterozygous genotypes were more frequent 16.7% having Arg25Pro (10/60; p < 0.035) and 10,0% having Thr263Ile (6/60), respectively. TGF-β1 levels in platelet-poor plasma of heterozygous Arg25Pro individuals were lower than those of homozygous members (Arg25Arg) in the latter group, but this discrepancy narrowly failed to be significant. Although polymorphisms in codon 10 and 25 were associated with each other, no difference was found between patients and controls concerning the Leu10Pro polymorphism.
Conclusions
The genetic differences in codons 25 and 263 suggest that TGF-β1 could play an important role in occurrence of CLP, however, functional experiments will be required to confirm the mechanisms of disturbed development.
doi:10.1186/1471-2350-5-15
PMCID: PMC441379  PMID: 15212689
18.  TP73 allelic expression in human brain and allele frequencies in Alzheimer's disease 
BMC Medical Genetics  2004;5:14.
Background
The p73 protein, a paralogue of the p53 tumor suppressor, is essential for normal development and survival of neurons. TP73 is therefore of interest as a candidate gene for Alzheimer's disease (AD) susceptibility. TP73 mRNA is transcribed from three promoters, termed P1 – P3, and there is evidence for an additional complexity in its regulation, namely, a variable allelic expression bias in some human tissues.
Methods
We utilized RT-PCR/RFLP and direct cDNA sequencing to measure allele-specific expression of TP73 mRNA, SNP genotyping to assess genetic associations with AD, and promoter-reporter assays to assess allele-specific TP73 promoter activity.
Results
Using a coding-neutral BanI polymorphism in TP73 exon 5 as an allelic marker, we found a pronounced allelic expression bias in one adult brain hippocampus, while 3 other brains (two adult; one fetal) showed approximately equal expression from both alleles. In a tri-ethnic elderly population of African-Americans, Caribbean Hispanics and Caucasians, a G/A single nucleotide polymorphism (SNP) at -386 in the TP73 P3 promoter was weakly but significantly associated with AD (crude O.R. for AD given any -386G allele 1.7; C.I. 1.2–2.5; after adjusting for age and education O.R. 1.5; C.I. 1.1–2.3, N= 1191). The frequency of the -386G allele varied by ethnicity and was highest in African-Americans and lowest in Caucasians. No significant differences in basal P3 promoter activity were detected comparing -386G vs. -386A promoter-luciferase constructs in human SK-NSH-N neuroblastoma cells.
Conclusions
There is a reproducible allelic expression bias in mRNA expression from the TP73 gene in some, though not all, adult human brains, and inter-individual variation in regulatory sequences of the TP73 locus may affect susceptibility to AD. However, additional studies will be necessary to exclude genetic admixture as an alternative explanation for the observed associations.
doi:10.1186/1471-2350-5-14
PMCID: PMC420466  PMID: 15175114
19.  Elevated white cell count in acute coronary syndromes: relationship to variants in inflammatory and thrombotic genes 
BMC Medical Genetics  2004;5:13.
Background
Elevated white blood cell counts (WBC) in acute coronary syndromes (ACS) increase the risk of recurrent events, but it is not known if this is exacerbated by pro-inflammatory factors. We sought to identify whether pro-inflammatory genetic variants contributed to alterations in WBC and C-reactive protein (CRP) in an ACS population.
Methods
WBC and genotype of interleukin 6 (IL-6 G-174C) and of interleukin-1 receptor antagonist (IL1RN intronic repeat polymorphism) were investigated in 732 Caucasian patients with ACS in the OPUS-TIMI-16 trial. Samples for measurement of WBC and inflammatory factors were taken at baseline, i.e. Within 72 hours of an acute myocardial infarction or an unstable angina event.
Results
An increased white blood cell count (WBC) was associated with an increased C-reactive protein (r = 0.23, p < 0.001) and there was also a positive correlation between levels of β-fibrinogen and C-reactive protein (r = 0.42, p < 0.0001). IL1RN and IL6 genotypes had no significant impact upon WBC. The difference in median WBC between the two homozygote IL6 genotypes was 0.21/mm3 (95% CI = -0.41, 0.77), and -0.03/mm3 (95% CI = -0.55, 0.86) for IL1RN. Moreover, the composite endpoint was not significantly affected by an interaction between WBC and the IL1 (p = 0.61) or IL6 (p = 0.48) genotype.
Conclusions
Cytokine pro-inflammatory genetic variants do not influence the increased inflammatory profile of ACS patients.
doi:10.1186/1471-2350-5-13
PMCID: PMC425582  PMID: 15171792
Inflammation; acute coronary syndromes; White cell count; interleukin 1 receptor antagonist; interleukin 6
20.  Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes 
BMC Medical Genetics  2004;5:12.
Background
A substantial body of research supports a genetic involvement in autism. Furthermore, results from various genomic screens implicate a region on chromosome 7q31 as harboring an autism susceptibility variant. We previously narrowed this 34 cM region to a 3 cM critical region (located between D7S496 and D7S2418) using the Collaborative Linkage Study of Autism (CLSA) chromosome 7 linked families. This interval encompasses about 4.5 Mb of genomic DNA and encodes over fifty known and predicted genes. Four candidate genes (NRCAM, LRRN3, KIAA0716, and LAMB1) in this region were chosen for examination based on their proximity to the marker most consistently cosegregating with autism in these families (D7S1817), their tissue expression patterns, and likely biological relevance to autism.
Methods
Thirty-six intronic and exonic single nucleotide polymorphisms (SNPs) and one microsatellite marker within and around these four candidate genes were genotyped in 30 chromosome 7q31 linked families. Multiple SNPs were used to provide as complete coverage as possible since linkage disequilibrium can vary dramatically across even very short distances within a gene. Analyses of these data used the Pedigree Disequilibrium Test for single markers and a multilocus likelihood ratio test.
Results
As expected, linkage disequilibrium occurred within each of these genes but we did not observe significant LD across genes. None of the polymorphisms in NRCAM, LRRN3, or KIAA0716 gave p < 0.05 suggesting that none of these genes is associated with autism susceptibility in this subset of chromosome 7-linked families. However, with LAMB1, the allelic association analysis revealed suggestive evidence for a positive association, including one individual SNP (p = 0.02) and three separate two-SNP haplotypes across the gene (p = 0.007, 0.012, and 0.012).
Conclusions
NRCAM, LRRN3, KIAA0716 are unlikely to be involved in autism. There is some evidence that variation in or near the LAMB1 gene may be involved in autism.
doi:10.1186/1471-2350-5-12
PMCID: PMC420465  PMID: 15128462
21.  PAX6 gene variations associated with aniridia in south India 
Background
Mutations in the transcription factor gene PAX6 have been shown to be the cause of the aniridia phenotype. The purpose of this study was to analyze patients with aniridia to uncover PAX6 gene mutations in south Indian population.
Methods
Total genomic DNA was isolated from peripheral blood of twenty-eight members of six clinically diagnosed aniridia families and 60 normal healthy controls. The coding exons of the human PAX6 gene were amplified by PCR and allele specific variations were detected by single strand conformation polymorphism (SSCP) followed by automated sequencing.
Results
The sequencing results revealed novel PAX6 mutations in three patients with sporadic aniridia: c.715ins5, [c.1201delA; c.1239A>G] and c.901delA. Two previously reported nonsense mutations were also found: c.482C>A, c.830G>A. A neutral polymorphism was detected (IVS9-12C>T) at the boundary of intron 9 and exon 10. The two nonsense mutations found in the coding region of human PAX6 gene are reported for the first time in the south Indian population.
Conclusion
The genetic analysis confirms that haploinsuffiency of the PAX6 gene causes the classic aniridia phenotype. Most of the point mutations detected in our study results in stop codons. Here we add three novel PAX6 gene mutations in south Indian population to the existing spectrum of mutations, which is not a well-studied ethnic group. Our study supports the hypothesis that a mutation in the PAX6 gene correlates with expression of aniridia.
doi:10.1186/1471-2350-5-9
PMCID: PMC419353  PMID: 15086958
22.  A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R 
BMC Medical Genetics  2004;5:10.
Background
Autism is a pervasive developmental disorder characterized by a triad of deficits: qualitative impairments in social interactions, communication deficits, and repetitive and stereotyped patterns of behavior. Although autism is etiologically heterogeneous, family and twin studies have established a definite genetic basis. The inheritance of idiopathic autism is presumed to be complex, with many genes involved; environmental factors are also possibly contributory. The analysis of chromosome abnormalities associated with autism contributes greatly to the identification of autism candidate genes.
Case presentation
We describe a child with autistic disorder and an interstitial deletion on chromosome 4q. This child first presented at 12 months of age with developmental delay and minor dysmorphic features. At 4 years of age a diagnosis of Pervasive Developmental Disorder was made. At 11 years of age he met diagnostic criteria for autism. Cytogenetic studies revealed a chromosome 4q deletion. The karyotype was 46, XY del 4 (q31.3-q33). Here we report the clinical phenotype of the child and the molecular characterization of the deletion using molecular cytogenetic techniques and analysis of polymorphic markers. These studies revealed a 19 megabase deletion spanning 4q32 to 4q34. Analysis of existing polymorphic markers and new markers developed in this study revealed that the deletion arose on a paternally derived chromosome. To date 33 genes of known or inferred function are deleted as a consequence of the deletion. Among these are the AMPA 2 gene that encodes the glutamate receptor GluR2 sub-unit, GLRA3 and GLRB genes that encode glycine receptor subunits and neuropeptide Y receptor genes NPY1R and NPY5R.
Conclusions
The deletion in this autistic subject serves to highlight specific autism candidate genes. He is hemizygous for AMPA 2, GLRA3, GLRB, NPY1R and NPY5R. GluR2 is the major determinant of AMPA receptor structure. Glutamate receptors maintain structural and functional plasticity of synapses. Neuropeptide Y and its receptors NPY1R and NPY5R play a role in hippocampal learning and memory. Glycine receptors are expressed in very early cortical development. Molecular cytogenetic studies and DNA sequence analysis in other patients with autism will be necessary to confirm that these genes are involved in autism.
doi:10.1186/1471-2350-5-10
PMCID: PMC411038  PMID: 15090072
23.  Molecular analysis using DHPLC of cystic fibrosis: increase of the mutation detection rate among the affected population in Central Italy 
Background
Cystic fibrosis (CF) is a multisystem disorder characterised by mutations of the CFTR gene, which encodes for an important component in the coordination of electrolyte movement across of epithelial cell membranes. Symptoms are pulmonary disease, pancreatic exocrine insufficiency, male infertility and elevated sweat concentrations. The CFTR gene has numerous mutations (>1000) and functionally important polymorphisms (>200). Early identification is important to provide appropriate therapeutic interventions, prognostic and genetic counselling and to ensure access to specialised medical services. However, molecular diagnosis by direct mutation screening has proved difficult in certain ethnic groups due to allelic heterogeneity and variable frequency of causative mutations.
Methods
We applied a gene scanning approach using DHPLC system for analysing specifically all CFTR exons and characterise sequence variations in a subgroup of CF Italian patients from the Lazio region (Central Italy) characterised by an extensive allelic heterogeneity.
Results
We have identified a total of 36 different mutations representing 88% of the CF chromosomes. Among these are two novel CFTR mutations, including one missense (H199R) and one microdeletion (4167delCTAAGCC).
Conclusion
Using this approach, we were able to increase our standard power rate of mutation detection of about 11% (77% vs. 88%).
doi:10.1186/1471-2350-5-8
PMCID: PMC419352  PMID: 15084222
Cystic fibrosis; CFTR mutation screening; DHPLC
24.  Glutathione S-Transferase Ω 1 variation does not influence age at onset of Huntington's disease 
Background
Huntington's disease (HD) is a fully penetrant, autosomal dominantly inherited disorder associated with abnormal expansions of a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of repeat units is highly predictive for the age at onset (AO) of the disorder. But AO is only modestly correlated with repeat length when intermediate HD expansions are considered. Circumstantial evidence suggests that additional features of the HD course are based on genetic traits. Therefore, it may be possible to investigate the genetic background of HD, i.e. to map the loci underlying the development and progression of the disease. Recently an association of Glutathione S-Transferase Ω 1 (GSTO1) and possibly of GSTO2 with AO was demonstrated for, both, Alzheimer's (AD) and Parkinson's disease (PD).
Methods
We have genotyped the polymorphisms rs4925 GSTO1 and rs2297235 GSTO2 in 232 patients with HD and 228 controls.
Results
After genotyping GSTO1 and GSTO2 polymorphisms, firstly there was no statistically significant difference in AO for HD patients, as well as secondly for HD patients vs. controls concerning, both, genotype and allele frequencies, respectively.
Conclusion
The GSTO1 and GSTO2 genes flanked by the investigated polymorphisms are not comprised in a primary candidate region influencing AO in HD.
doi:10.1186/1471-2350-5-7
PMCID: PMC394327  PMID: 15040808
25.  NAT gene polymorphisms and susceptibility to Alzheimer's disease: identification of a novel NAT1 allelic variant 
Background
Alzheimer's disease is multifactorial, having environmental, toxicological and genetic risk factors. Impaired folate and homocysteine metabolism has been hypothesised to increase risk. In addition to its xenobiotic-metabolising capacity, human arylamine N-acetyltransferase type-1 (NAT1) acetylates the folate catabolite para-aminobenzoylglutamate and is implicated in folate metabolism. The purpose of this study was to determine whether polymorphisms in the human NAT genes influence susceptibility to Alzheimer's disease.
Methods
Elderly individuals with and without Alzheimer's disease were genotyped at the polymorphic NAT1 (147 cases; 111 controls) and NAT2 (45 cases; 63 controls) loci by polymerase chain reaction-restriction fragment length polymorphism, and the genotype and allele frequencies were compared using the chi-squared test.
Results
Although a trend towards fast NAT2 acetylator-associated Alzheimer's disease susceptibility was indicated and the NAT1*10/1*10 genotype was observed only in cases of Alzheimer's disease (6/147, 4.1%), no significant difference in the frequency of NAT2 (p = 0.835) or NAT1 (p = 0.371) genotypes was observed between cases and controls. In addition, a novel NAT1 variant, NAT1*11B, was identified.
Conclusions
These results suggest that genetic polymorphisms in NAT1 and NAT2 do not influence susceptibility to Alzheimer's disease, although the increase in frequency of the NAT1*10 allele in Alzheimer's disease is worthy of further investigation. Due to its similarity with the NAT1*11A allele, NAT1*11B is likely to encode an enzyme with reduced NAT1 activity.
doi:10.1186/1471-2350-5-6
PMCID: PMC395831  PMID: 15142281

Results 1-25 (30)