PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (86)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Mutations underlying 3-Hydroxy-3-Methylglutaryl CoA Lyase deficiency in the Saudi population 
BMC Medical Genetics  2006;7:86.
Background
3-Hydroxy-3-Methylglutaric aciduria (3HMG, McKusick: 246450) is an autosomal recessive branched chain organic aciduria caused by deficiency of the enzyme 3-Hydroxy-3-Methylglutaryl CoA lyase (HL, HMGCL, EC 4.1.3.4). HL is encoded by HMGCL gene and many mutations have been reported. 3HMG is commonly observed in Saudi Arabia.
Methods
We utilized Whole Genome Amplification (WGA), PCR and direct sequencing to identify mutations underlying 3HMG in the Saudi population. Two patients from two unrelated families and thirty-four 3HMG positive dried blood spots (DBS) were included.
Results
We detected the common missense mutation R41Q in 89% of the tested alleles (64 alleles). 2 alleles carried the frame shift mutation F305fs (-2) and the last two alleles had a novel splice site donor IVS6+1G>A mutation which was confirmed by its absence in more than 100 chromosomes from the normal population. All mutations were present in a homozygous state, reflecting extensive consanguinity. The high frequency of R41Q is consistent with a founder effect. Together the three mutations described account for >94% of the pathogenic mutations underlying 3HMG in Saudi Arabia.
Conclusion
Our study provides the most extensive genotype analysis on 3HMG patients from Saudi Arabia. Our findings have direct implications on rapid molecular diagnosis, prenatal and pre-implantation diagnosis and population based prevention programs directed towards 3HMG.
doi:10.1186/1471-2350-7-86
PMCID: PMC1764877  PMID: 17173698
2.  β2-adrenergic receptor and UCP3 variants modulate the relationship between age and type 2 diabetes mellitus 
BMC Medical Genetics  2006;7:85.
Background
It is widely accepted that Type 2 Diabetes Mellitus (T2DM) and other complex diseases are the product of complex interplay between genetic susceptibility and environmental causes. To cope with such a complexity, all the statistical and conceptual strategies available should be used. The working hypothesis of this study was that two well-known T2DM risk factors could have diverse effect in individuals carrying different genotypes. In particular, our effort was to investigate if a well-defined group of genes, involved in peripheral energy expenditure, could modify the impact of two environmental factors like age and obesity on the risk to develop diabetes. To achieve this aim we exploited a multianalytical approach also using dimensionality reduction strategy and conservative significance correction strategies.
Methods
We collected clinical data and characterised five genetic variants and 2 environmental factors of 342 ambulatory T2DM patients and 305 unrelated non-diabetic controls. To take in account the role of one of the major co-morbidity conditions we stratified the whole sample according to the presence of obesity, over and above the 30 Kg/m2 BMI threshold.
Results
By monofactorial analyses the ADRB2-27 Glu27 homozygotes had a lower frequency of diabetes when compared with Gln27 carriers (Odds Ratio (OR) 0.56, 95% Confidence Interval (CI) 0.36 – 0.91). This difference was even more marked in the obese subsample.
Multifactor Dimensionality Reduction method in the non-obese subsample showed an interaction among age, ADRB2-16 and UCP3 polymorphisms. In individuals that were UCP3 T-carriers and ADRB2-16 Arg-carriers the OR increased from 1 in the youngest to 10.84 (95% CI 4.54–25.85) in the oldest. On the contrary, in the ADRB2-16 GlyGly and UCP3 CC double homozygote subjects, the OR for the disease was 1.10 (95% CI 0.53–2.27) in the youngest and 1.61 (95% CI 0.55–4.71) in the oldest.
Conclusion
Although our results should be confirmed by further studies, our data suggests that, when properly evaluated, it is possible to identify genetic factors that could influence the effect of common risk factors.
doi:10.1186/1471-2350-7-85
PMCID: PMC1712228  PMID: 17150099
3.  A novel mutation in the SH3BP2 gene causes cherubism: case report 
BMC Medical Genetics  2006;7:84.
Background
Cherubism is a rare hereditary multi-cystic disease of the jaws, characterized by its typical appearance in early childhood, and stabilization and remission after puberty. It is genetically transmitted in an autosomal dominant fashion and the gene coding for SH3-binding protein 2 (SH3BP2) may be involved.
Case presentation
We investigated a family consisting of 21 members with 3 female affected individuals with cherubism from Northern China. Of these 21 family members, 17 were recruited for the genetic analysis. We conducted the direct sequence analysis of the SH3BP2 gene among these 17 family members. A disease-causing mutation was identified in exon 9 of the gene. It was an A1517G base change, which leads to a D419G amino acid substitution.
Conclusion
To our knowledge, the A1517G mutation has not been reported previously in cherubism. This finding is novel.
doi:10.1186/1471-2350-7-84
PMCID: PMC1764878  PMID: 17147794
4.  INSIG-2 promoter polymorphism and obesity related phenotypes: association study in 1428 members of 248 families 
BMC Medical Genetics  2006;7:83.
Background
Obesity is a major public health problem. Body mass index (BMI) is a highly heritable phenotype but robust associations of genetic polymorphisms to BMI or other obesity-related phenotypes have been difficult to establish. Recently a large genetic association study showed evidence for association of the single nucleotide polymorphism (SNP) rs7566605, which lies 10 Kb 5' to the first exon of the insulin-induced gene 2 (INSIG-2), with obesity in several cohorts. We tested this polymorphism for association with body mass related phenotypes in a large family study whose mean BMI was consistent with moderate overweight.
Methods
We studied 1428 members of 248 British Caucasian families who had been ascertained through a proband with hypertension. We measured BMI, waist and hip circumference, and plasma levels of leptin. We genotyped the rs7566605 SNP using a restriction fragment length polymorphism assay, and carried out a family-based association test for quantitative traits related to obesity using the statistical programs MERLIN and QTDT.
Results
We observed no significant association between genotype at rs7566605 and covariate-adjusted (for age, sex, alcohol consumption, smoking and exercise habit) log-transformed BMI, waist measurement, hip measurement, waist-to-hip ratio, or plasma levels of leptin.
Conclusion
There was no association between genotype at rs7566605 and obesity-related phenotypes in this British Caucasian population. These families were in general moderately overweight, few members being severely obese. Our result indicates that this polymorphism has little if any effect on BMI within the normal to moderately overweight range. The effects of this polymorphism on body mass may be restricted to those already predisposed to at least moderate obesity as a result of environmental factors and other predisposing genotypes.
doi:10.1186/1471-2350-7-83
PMCID: PMC1698479  PMID: 17137505
5.  Best practice guidelines for the molecular genetic diagnosis of Type 1 (HFE-related) hereditary haemochromatosis 
BMC Medical Genetics  2006;7:81.
Background
Hereditary haemochromatosis (HH) is a recessively-inherited disorder of iron over-absorption prevalent in Caucasian populations. Affected individuals for Type 1 HH are usually either homozygous for a cysteine to tyrosine amino acid substitution at position 282 (C282Y) of the HFE gene, or compound heterozygotes for C282Y and for a histidine to aspartic acid change at position 63 (H63D). Molecular genetic testing for these two mutations has become widespread in recent years. With diverse testing methods and reporting practices in use, there was a clear need for agreed guidelines for haemochromatosis genetic testing. The UK Clinical Molecular Genetics Society has elaborated a consensus process for the development of disease-specific best practice guidelines for genetic testing.
Methods
A survey of current practice in the molecular diagnosis of haemochromatosis was conducted. Based on the results of this survey, draft guidelines were prepared using the template developed by UK Clinical Molecular Genetics Society. A workshop was held to develop the draft into a consensus document. The consensus document was then posted on the Clinical Molecular Genetics Society website for broader consultation and amendment.
Results
Consensus or near-consensus was achieved on all points in the draft guidelines. The consensus and consultation processes worked well, and outstanding issues were documented in an appendix to the guidelines.
Conclusion
An agreed set of best practice guidelines were developed for diagnostic, predictive and carrier testing for hereditary haemochromatosis and for reporting the results of such testing.
doi:10.1186/1471-2350-7-81
PMCID: PMC1684250  PMID: 17134494
6.  Identification of the first intragenic deletion of the PITX2 gene causing an Axenfeld-Rieger Syndrome: case report 
BMC Medical Genetics  2006;7:82.
Background
Axenfeld-Rieger syndrome (ARS) is characterized by bilateral congenital abnormalities of the anterior segment of the eye associated with abnormalities of the teeth, midface, and umbilicus. Most cases of ARS are caused by mutations in the genes encoding PITX2 or FOXC1. Here we describe a family affected by a severe form of ARS.
Case presentation
Two members of this family (father and daughter) presented with typical ARS and developed severe glaucoma. The ocular phenotype was much more severe in the daughter than in the father. Magnetic resonance imaging (MRI) detected an aggressive form of meningioma in the father. There was no mutation in the PITX2 gene, determined by exon screening. We identified an intragenic deletion by quantitative genomic PCR analysis and characterized this deletion in detail.
Conclusion
Our findings implicate the first intragenic deletion of the PITX2 gene in the pathogenesis of a severe form of ARS in an affected family. This study stresses the importance of a systematic search for intragenic deletions in families affected by ARS and in sporadic cases for which no mutations in the exons or introns of PITX2 have been found. The molecular genetics of some ARS pedigrees should be re-examined with enzymes that can amplify medium and large genomic fragments.
doi:10.1186/1471-2350-7-82
PMCID: PMC1684248  PMID: 17134502
7.  EDAR mutation in autosomal dominant hypohidrotic ectodermal dysplasia in two Swedish families 
BMC Medical Genetics  2006;7:80.
Background
Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder characterized by defective development of teeth, hair, nails and eccrine sweat glands. Both autosomal dominant and autosomal recessive forms of HED have previously been linked to mutations in the ectodysplasin 1 anhidrotic receptor (EDAR) protein that plays an important role during embryogenesis.
Methods
The coding DNA sequence of the EDAR gene was analyzed in two large Swedish three-generational families with autosomal dominant HED.
Results
A non-sense C to T mutation in exon 12 was identified in both families. This disease-specific mutation changes an arginine amino acid in position 358 of the EDAR protein into a stop codon (p.Arg358X), thereby truncating the protein. In addition to the causative mutation two polymorphisms, not associated with the HED disorder, were also found in the EDAR gene.
Conclusion
The finding of the p.Arg358X mutation in the Swedish families is the first corroboration of a previously described observation in an American family. Thus, our study strengthens the role of this particular mutation in the aetiology of autosomal dominant HED and confirms the importance of EDAR for the development of HED.
doi:10.1186/1471-2350-7-80
PMCID: PMC1684249  PMID: 17125505
8.  No association between polymorphisms in the BDNF gene and age at onset in Huntington disease 
BMC Medical Genetics  2006;7:79.
Background
Recent evidence suggests that brain-derived neurotrophic factor (BDNF) is an attractive candidate for modifying age at onset (AO) in Huntington disease (HD). In particular, the functional Val66Met polymorphism appeared to exert a significant effect. Here we evaluate BDNF variability with respect to AO of HD using markers that represent the entire locus.
Methods
Five selected tagging polymorphisms were genotyped across a 65 kb region comprising the BDNF gene in a well established cohort of 250 unrelated German HD patients.
Results
Addition of BDNF genotype variations or one of the marker haplotypes to the effect of CAG repeat lengths did not affect the variance of the AO.
Conclusion
We were unable to verify a recently reported association between the functional Val66Met polymorphism in the BDNF gene and AO in HD. From our findings, we conclude that neither sequence variations in nor near the gene contribute significantly to the variance of AO.
doi:10.1186/1471-2350-7-79
PMCID: PMC1637098  PMID: 17096834
9.  Analysis of the XRCC1 gene as a modifier of the cerebral response in ischemic stroke 
BMC Medical Genetics  2006;7:78.
Background
Although there have been studies of the genetic risk factors in the development of stroke, there have been few investigations of role of genes in the cerebral response to ischemia. The brain responds to ischemia in a series of reactions that ultimately influence the volume of a stroke that, in general, correlates with disability. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of this response and impact stroke volume. One of the pathways participating in the cerebral ischemic response involves reactive oxygen species which can cause oxidative damage to nucleic acids. DNA repair mechanisms are in place to protect against such damage and imply a role for DNA repair genes in the response of the brain to ischemia and are potential candidate genes for further investigation.
Methods
We studied two common polymorphisms in the DNA repair gene, XRCC1, C26304T and G28152A, in 134 well characterized patients with non lacunar ischemic strokes. We also performed a case control association study with 113 control patients to assess whether these variants represent risk factors in the development of ischemic stroke.
Results
Independent of etiology, the "T" allele of the C26304T polymorphism is significantly associated with larger stroke volumes (T-test analysis, p < 0.044; multivariate regression analysis, β = 0.23, p < 0.008). In the case control association study, we found that neither of these polymorphisms represented a risk factor for the development of stroke.
Conclusion
Our study suggests a major gene effect of the "T" allele of the C26304T polymorphism modulating the cerebral response to ischemia in non lacunar ischemic stroke.
doi:10.1186/1471-2350-7-78
PMCID: PMC1654138  PMID: 17087834
10.  Rubinstein-Taybi Syndrome: spectrum of CREBBP mutations in Italian patients 
BMC Medical Genetics  2006;7:77.
Background
Rubinstein-Taybi Syndrome (RSTS, MIM 180849) is a rare congenital disorder characterized by mental and growth retardation, broad and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms and increased risk of tumors. RSTS is caused by chromosomal rearrangements and point mutations in one copy of the CREB-binding protein gene (CREBBP or CBP) in 16p13.3. To date mutations in CREBBP have been reported in 56.6% of RSTS patients and an average figure of 10% has ascribed to deletions.
Methods
Our study is based on the mutation analysis of CREBBP in 31 Italian RSTS patients using segregation analysis of intragenic microsatellites, BAC FISH and direct sequencing of PCR and RT-PCR fragments.
Results
We identified a total of five deletions, two of the entire gene and three, all in a mosaic condition, involving either the 5' or the 3' region. By direct sequencing a total of 14 de novo mutations were identified: 10 truncating (5 frameshift and 5 nonsense), one splice site, and three novel missense mutations. Two of the latter affect the HAT domain, while one maps within the conserved nuclear receptor binding of (aa 1–170) and will probably destroy a Nuclear Localization Signal. Identification of the p.Asn1978Ser in the healthy mother of a patient also carrying a de novo frameshift mutation, questions the pathogenetic significance of the missense change reported as recurrent mutation. Thirteen additional polymorphisms, three as of yet unreported, were also detected.
Conclusion
A high detection rate (61.3%) of mutations is confirmed by this Italian study which also attests one of the highest microdeletion rate (16%) documented so far.
doi:10.1186/1471-2350-7-77
PMCID: PMC1626071  PMID: 17052327
11.  Triglyceride associated polymorphisms of the APOA5 gene have very different allele frequencies in Pune, India compared to Europeans 
BMC Medical Genetics  2006;7:76.
Background
The APOA5 gene variants, -1131T>C and S19W, are associated with altered triglyceride concentrations in studies of subjects of Caucasian and East Asian descent. There are few studies of these variants in South Asians. We investigated whether the two APOA5 variants also show similar association with various lipid parameters in Indian population as in the UK white subjects.
Methods
We genotyped 557 Indian adults from Pune, India, and 237 UK white adults for -1131T>C and S19W variants in the APOA5 gene, compared their allelic and genotype frequency and determined their association with fasting serum triglycerides, total cholesterol, HDL and LDL cholesterol levels using univariate general linear analysis. APOC3 SstI polymorphism was also analyzed in 175 Pune Indian subjects for analysis of linkage disequilibrium with the APOA5 variants.
Results
The APOA5 -1131C allele was more prevalent in Indians from Pune (Pune Indians) compared to UK white subjects (allele frequency 20% vs. 4%, p = 0.00001), whereas the 19W allele was less prevalent (3% vs. 6% p = 0.0015). Patterns of linkage disequilibrium between the two variants were similar between the two populations and confirmed that they occur on two different haplotypes. In Pune Indians, the presence of -1131C allele and the 19W allele was associated with a 19% and 15% increase respectively in triglyceride concentrations although only -1131C was significant (p = 0.0003). This effect size was similar to that seen in the UK white subjects. Analysis of the APOC3 SstI polymorphism in 175 Pune Indian subjects showed that this variant is not in appreciable linkage disequilibrium with the APOA5 -1131T>C variant (r2 = 0.07).
Conclusion
This is the first study to look at the role of APOA5 in Asian Indian subjects that reside in India. The -1131C allele is more prevalent and the 19W allele is less prevalent in Pune Indians compared to UK Caucasians. We confirm that the APOA5 variants are associated with triglyceride levels independent of ethnicity and that this association is similar in magnitude in Asian Indians and Caucasians. The -1131C allele is present in 36% of the Pune Indian population making it a powerful marker for looking at the role of elevated triglycerides in important conditions such as pancreatitis, diabetes and coronary heart disease.
doi:10.1186/1471-2350-7-76
PMCID: PMC1618828  PMID: 17032446
12.  Contribution of germline BRCA1 and BRCA2 sequence alterations to breast cancer in Northern India 
BMC Medical Genetics  2006;7:75.
Background
A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Indian women. We investigated the distribution and the nature of BRCA1 and BRCA2 germline mutations and polymorphisms in a cohort of 204 Indian breast cancer patients and 140 age-matched controls.
Method
Cases were selected with regard to early onset disease (≤40 years) and family history of breast and ovarian cancer. Two hundred four breast cancer cases along with 140 age-matched controls were analyzed for mutations. All coding regions and exon-intron boundaries of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis followed by direct sequencing of detected variants.
Results
In total, 18 genetic alterations were identified. Three deleterious frame-shift mutations (185delAG in exon 2; 4184del4 and 3596del4 in exon 11) were identified in BRCA1, along with one missense mutation (K1667R), one 5'UTR alteration (22C>G), three intronic variants (IVS10-12delG, IVS13+2T>C, IVS7+38T>C) and one silent substitution (5154C>T). Similarly three pathogenic protein-truncating mutations (6376insAA in exon 11, 8576insC in exon19, and 9999delA in exon 27) along with one missense mutation (A2951T), four intronic alterations (IVS2+90T>A, IVS7+75A>T, IVS8+56C>T, IVS25+58insG) and one silent substitution (1593A>G) were identified in BRCA2. Four previously reported polymorphisms (K1183R, S1613G, and M1652I in BRCA1, and 7470A>G in BRCA2) were detected in both controls and breast cancer patients. Rare BRCA1/2 sequence alterations were observed in 15 out of 105 (14.2%) early-onset cases without family history and 11.7% (4/34) breast cancer cases with family history. Of these, six were pathogenic protein truncating mutations. In addition, several variants of uncertain clinical significance were identified. Among these are two missense variants, one alteration of a consensus splice donor sequence, and a variant that potentially disrupts translational initiation.
Conclusion
BRCA1 and BRCA2 mutations appear to account for a lower proportion of breast cancer patients at increased risk of harboring such mutations in Northern India (6/204, 2.9%) than has been reported in other populations. However, given the limited extent of reported family history among these patients, the observed mutation frequency is not dissimilar from that reported in other cohorts of early onset breast cancer patients. Several of the identified mutations are unique and novel to Indian patients.
doi:10.1186/1471-2350-7-75
PMCID: PMC1617095  PMID: 17018160
13.  Generation Scotland: the Scottish Family Health Study; a new resource for researching genes and heritability 
BMC Medical Genetics  2006;7:74.
Background
Generation Scotland: the Scottish Family Health Study aims to identify genetic variants accounting for variation in levels of quantitative traits underlying the major common complex diseases (such as cardiovascular disease, cognitive decline, mental illness) in Scotland.
Methods/Design
Generation Scotland will recruit a family-based cohort of up to 50,000 individuals (comprising siblings and parent-offspring groups) across Scotland. It will be a six-year programme, beginning in Glasgow and Tayside in the first two years (Phase 1) before extending to other parts of Scotland in the remaining four years (Phase 2). In Phase 1, individuals aged between 35 and 55 years, living in the East and West of Scotland will be invited to participate, along with at least one (and preferably more) siblings and any other first degree relatives aged 18 or over. The total initial sample size will be 15,000 and it is planned that this will increase to 50,000 in Phase 2. All participants will be asked to contribute blood samples from which DNA will be extracted and stored for future investigation. The information from the DNA, along with answers to a life-style and medical history questionnaire, clinical and biochemical measurements taken at the time of donation, and subsequent health developments over the life course (traced through electronic health records) will be stored and used for research purposes. In addition, a detailed public consultation process will begin that will allow respondents' views to shape and develop the study. This is an important aspect to the research, and forms the continuation of a long-term parallel engagement process.
Discussion
As well as gene identification, the family-based study design will allow measurement of the heritability and familial aggregation of relevant quantitative traits, and the study of how genetic effects may vary by parent-of-origin. Long-term potential outcomes of this research include the targeting of disease prevention and treatment, and the development of screening tools based on the new genetic information. This study approach is complementary to other population-based genetic epidemiology studies, such as UK Biobank, which are established primarily to characterise genes and genetic risk in the population.
doi:10.1186/1471-2350-7-74
PMCID: PMC1592477  PMID: 17014726
14.  A novel mutation in STK11 gene is associated with Peutz-Jeghers Syndrome in Indian patients 
BMC Medical Genetics  2006;7:73.
Background
Peutz-Jeghers syndrome (PJS) is a rare multi-organ cancer syndrome and understanding its genetic basis may help comprehend the molecular mechanism of familial cancer. A number of germ line mutations in the STK11 gene, encoding a serine threonine kinase have been reported in these patients. However, STK11 mutations do not explain all PJS cases. An earlier study reported absence of STK11 mutations in two Indian families and suggested another potential locus on 19q13.4 in one of them.
Methods
We sequenced the promoter and the coding region including the splice-site junctions of the STK11 gene in 16 affected members from ten well-characterized Indian PJS families with a positive family history.
Results
We did not observe any of the reported mutations in the STK11 gene in the index patients from these families. We identified a novel pathogenic mutation (c.790_793 delTTTG) in the STK11 gene in one index patient (10%) and three members of his family. The mutation resulted in a frame-shift leading to premature termination of the STK11 protein at 286th codon, disruption of kinase domain and complete loss of C-terminal regulatory domain. Based on these results, we could offer predictive genetic testing, prenatal diagnosis and genetic counselling to other members of the family.
Conclusion
Ours is the first study reporting the presence of STK11 mutation in Indian PJS patients. It also suggests that reported mutations in the STK11 gene are not responsible for the disease and novel mutations also do not account for many Indian PJS patients. Large-scale genomic deletions in the STK11 gene or another locus may be associated with the PJS phenotype in India and are worth future investigation.
doi:10.1186/1471-2350-7-73
PMCID: PMC1609100  PMID: 17010210
15.  Molecular and clinical analyses of 84 patients with tuberous sclerosis complex 
BMC Medical Genetics  2006;7:72.
Background
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by the development of multiple hamartomas in many internal organs. Mutations in either one of 2 genes, TSC1 and TSC2, have been attributed to the development of TSC. More than two-thirds of TSC patients are sporadic cases, and a wide variety of mutations in the coding region of the TSC1 and TSC2 genes have been reported.
Methods
Mutational analysis of TSC1 and TSC2 genes was performed in 84 Taiwanese TSC families using denaturing high-performance liquid chromatography (DHPLC) and direct sequencing.
Results
Mutations were identified in a total of 64 (76 %) cases, including 9 TSC1 mutations (7 sporadic and 2 familial cases) and 55 TSC2 mutations (47 sporadic and 8 familial cases). Thirty-one of the 64 mutations found have not been described previously. The phenotype association is consistent with findings from other large studies, showing that disease resulting from mutations to TSC1 is less severe than disease due to TSC2 mutation.
Conclusion
This study provides a representative picture of the distribution of mutations of the TSC1 and TSC2 genes in clinically ascertained TSC cases in the Taiwanese population. Although nearly half of the mutations identified were novel, the kinds and distribution of mutation were not different in this population compared to that seen in larger European and American studies.
doi:10.1186/1471-2350-7-72
PMCID: PMC1592085  PMID: 16981987
16.  Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24: the HD MAPS study 
BMC Medical Genetics  2006;7:71.
Background
Age at onset of Huntington's disease (HD) is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL), modifying age at onset in HD.
Methods
In order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs.
Results
Suggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002) increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001), while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03) and the combined sample (LOD = 1.78, p = 0.002). Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci.
Conclusion
In this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient.
doi:10.1186/1471-2350-7-71
PMCID: PMC1586197  PMID: 16914060
17.  Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P) 
BMC Medical Genetics  2006;7:69.
Background
Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA). We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann-Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P). The goal of this study was to clinically evaluate this assay.
Methods
Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin-conjugated fluorophore, the reactions were analyzed by Luminex IS100. Clinical evaluations were conducted using de-identified patient DNA samples.
Results
We evaluated a multiplexed suspension array assay that includes wild-type and mutant genetic determinations for Gaucher disease allele c.1448T>C. Two percent of samples reported to be wild-type by conventional methods were observed to be c.1448T>C heterozygous using our assay. Sequence analysis suggested that this phenomenon was due to co-amplification of the functional gene and a paralogous pseudogene (ΨGBA) due to a polymorphism in the primer-binding site of the latter. Primers for the amplification of this allele were then repositioned to span an upstream deletion in the pseudogene, yielding a much longer amplicon. Although it is widely reported that long amplicons negatively impact amplification or detection efficiency in recently adopted multiplex techniques, this assay design functioned properly and resolved the occurrence of false heterozygosity.
Conclusion
Although previously available sequence information suggested GBA gene/pseudogene discrimination capabilities with a short amplified product, we identified common single-nucleotide polymorphisms in the pseudogene that required amplification of a larger region for effective discrimination.
doi:10.1186/1471-2350-7-69
PMCID: PMC1559599  PMID: 16887033
18.  Potassium channel gene mutations rarely cause atrial fibrillation 
BMC Medical Genetics  2006;7:70.
Background
Mutations in several potassium channel subunits have been associated with rare forms of atrial fibrillation. In order to explore the role of potassium channels in inherited typical forms of the arrhythmia, we have screened a cohort of patients from a referral clinic for mutations in the channel subunit genes implicated in the arrhythmia. We sought to determine if mutations in KCNJ2 and KCNE1-5 are a common cause of atrial fibrillation.
Methods
Serial patients with lone atrial fibrillation or atrial fibrillation with hypertension were enrolled between June 1, 2001 and January 6, 2005. Each patient underwent a standardized interview and physical examination. An electrocardiogram, echocardiogram and blood sample for genetic analysis were also obtained. Patients with a family history of AF were screened for mutations in KCNJ2 and KCNE1-5 using automated sequencing.
Results
96 patients with familial atrial fibrillation were enrolled. Eighty-three patients had lone atrial fibrillation and 13 had atrial fibrillation and hypertension. Patients had a mean age of 56 years at enrollment and 46 years at onset of atrial fibrillation. Eighty-one percent of patients had paroxysmal atrial fibrillation at enrollment. Unlike patients with an activating mutation in KCNQ1, the patients had a normal QTc interval with a mean of 412 ± 42 ms. Echocardiography revealed a normal mean ejection fraction of 62.0 ± 7.2 % and mean left atrial dimension of 39.9 ± 7.0 mm. A number of common polymorphisms in KCNJ2 and KCNE1-5 were identified, but no mutations were detected.
Conclusion
Mutations in KCNJ2 and KCNE1-5 rarely cause typical atrial fibrillation in a referral clinic population.
doi:10.1186/1471-2350-7-70
PMCID: PMC1559598  PMID: 16887036
19.  Association of surfactant protein A polymorphisms with otitis media in infants at risk for asthma 
BMC Medical Genetics  2006;7:68.
Background
Otitis media is one of the most common infections of early childhood. Surfactant protein A functions as part of the innate immune response, which plays an important role in preventing infections early in life. This prospective study utilized a candidate gene approach to evaluate the association between polymorphisms in loci encoding SP-A and risk of otitis media during the first year of life among a cohort of infants at risk for developing asthma.
Methods
Between September 1996 and December 1998, women were invited to participate if they had at least one other child with physician-diagnosed asthma. Each mother was given a standardized questionnaire within 4 months of her infant's birth. Infant respiratory symptoms were collected during quarterly telephone interviews at 6, 9 and 12 months of age. Genotyping was done on 355 infants for whom whole blood and complete otitis media data were available.
Results
Polymorphisms at codons 19, 62, and 133 in SP-A1, and 223 in SP-A2 were associated with race/ethnicity. In logistic regression models incorporating estimates of uncertainty in haplotype assignment, the 6A4/1A5haplotype was protective for otitis media among white infants in our study population (OR 0.23; 95% CI 0.07,0.73).
Conclusion
These results indicate that polymorphisms within SP-A loci may be associated with otitis media in white infants. Larger confirmatory studies in all ethnic groups are warranted.
doi:10.1186/1471-2350-7-68
PMCID: PMC1557482  PMID: 16884531
20.  The E670G SNP in the PCSK9 gene is associated with polygenic hypercholesterolemia in men but not in women 
BMC Medical Genetics  2006;7:66.
Background
Common genetic variants in the PCSK9 gene have been reported to be associated with both elevated and exceptionally low LDL levels. The association of a common haplotype, encompassing the E670G single nucleotide polymorphism, with LDL levels reported by Chen et al (J Am Coll Cardiol 2005; 45: 1644) was not confirmed by Kotowski et al (Am J Hum Genet 2006; 78:410–422).
Methods
The incidence of the E670G SNP was determined in 506 patients attending the lipid clinic, University Hospital, Hamburg.
Results
The frequency in men with polygenic hypercholesterolemia, 0.11 was significantly higher than in men with LDL<50th percentile, 0.03, p = 0.01. In women there was no difference in the allele frequencies between the two groups.
Conclusion
In a European population the E670G SNP in the PCSK9 gene is associated with increased LDL in men but not in women.
doi:10.1186/1471-2350-7-66
PMCID: PMC1562364  PMID: 16875509
21.  Evidence for association between the HLA-DQA locus and abdominal aortic aneurysms in the Belgian population: a case control study 
BMC Medical Genetics  2006;7:67.
Background
Chronic inflammation and autoimmunity likely contribute to the pathogenesis of abdominal aortic aneurysms (AAAs). The aim of this study was to investigate the role of autoimmunity in the etiology of AAAs using a genetic association study approach with HLA polymorphisms.
Methods
HLA-DQA1, -DQB1, -DRB1 and -DRB3-5 alleles were determined in 387 AAA cases (180 Belgian and 207 Canadian) and 426 controls (269 Belgian and 157 Canadian) by a PCR and single-strand oligonucleotide probe hybridization assay.
Results
We observed a potential association with the HLA-DQA1 locus among Belgian males (empirical p = 0.027, asymptotic p = 0.071). Specifically, there was a significant difference in the HLA-DQA1*0102 allele frequencies between AAA cases (67/322 alleles, 20.8%) and controls (44/356 alleles, 12.4%) in Belgian males (empirical p = 0.019, asymptotic p = 0.003). In haplotype analyses, marginally significant association was found between AAA and haplotype HLA-DQA1-DRB1 (p = 0.049 with global score statistics and p = 0.002 with haplotype-specific score statistics).
Conclusion
This study showed potential evidence that the HLA-DQA1 locus harbors a genetic risk factor for AAAs suggesting that autoimmunity plays a role in the pathogenesis of AAAs.
doi:10.1186/1471-2350-7-67
PMCID: PMC1559600  PMID: 16879749
22.  Lack of MEF2A Δ7aa mutation in Irish families with early onset ischaemic heart disease, a family based study 
BMC Medical Genetics  2006;7:65.
Background
Ischaemic heart disease (IHD) is a complex disease due to the combination of environmental and genetic factors. Mutations in the MEF2A gene have recently been reported in patients with IHD. In particular, a 21 base pair deletion (Δ7aa) in the MEF2A gene was identified in a family with an autosomal dominant pattern of inheritance of IHD. We investigated this region of the MEF2A gene using an Irish family-based study, where affected individuals had early-onset IHD.
Methods
A total of 1494 individuals from 580 families were included (800 discordant sib-pairs and 64 parent-child trios). The Δ7aa region of the MEF2A gene was investigated based on amplicon size.
Results
The Δ7aa mutation was not detected in any individual. Variation in the number of CAG (glutamate) and CCG (proline) residues was detected in a nearby region. However, this was not found to be associated with IHD.
Conclusion
The Δ7aa mutation was not detected in any individual within the study population and is unlikely to play a significant role in the development of IHD in Ireland. Using family-based tests of association the number of tri-nucleotide repeats in a nearby region of the MEF2A gene was not associated with IHD in our study group.
doi:10.1186/1471-2350-7-65
PMCID: PMC1552052  PMID: 16872533
23.  An investigation of polymorphisms in the 17q11.2-12 CC chemokine gene cluster for association with multiple sclerosis in Australians 
BMC Medical Genetics  2006;7:64.
Background
Multiple sclerosis (MS) is a disorder of the central nervous system (CNS) characterised by inflammation and neuronal degeneration. It is believed to result from the complex interaction of a number of genes, each with modest effect. Chemokines are vital to the migration of cells to sites of inflammation, including the CNS, and many are implicated in MS pathogenesis. Most of the CC chemokine genes are encoded in a cluster on chromosome 17q11.2-12, which has been identified in a number of genome wide screens as being potentially associated with MS.
Methods
We conducted a two-stage analysis to investigate the chemokine gene cluster for association with MS. After sequencing the chemokine genes in several DNA pools to identify common polymorphisms, 12 candidate single-nucleotide polymorphisms (SNPs) were genotyped in a cohort of Australian MS trio families.
Results
Marginally significant (uncorrected) transmission distortion was identified for four of the SNPs after stratification for several factors. We also identified marginally significant (uncorrected) transmission distortion for haplotypes encompassing the CCL2 and CCL11 genes, using two independent cohorts, which was consistent with recent reports from another group.
Conclusion
Our results implicate several chemokines as possibly being associated with MS susceptibility, and given that chemokines and their receptors are suitable targets for therapeutic agents, further investigation is warranted in this region.
doi:10.1186/1471-2350-7-64
PMCID: PMC1550395  PMID: 16872505
24.  Three allele combinations associated with Multiple Sclerosis 
BMC Medical Genetics  2006;7:63.
Background
Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS.
Methods
286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFβ1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group.
Results
We identified two previously unknown MS-associated tri-allelic combinations:
-509TGFβ1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Δ32, DRB1*04 were also reidentified as MS-associated.
Conclusion
These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles.
doi:10.1186/1471-2350-7-63
PMCID: PMC1557481  PMID: 16872485
25.  Analysis of coding variants in the betacellulin gene in type 2 diabetes and insulin secretion in African American subjects 
BMC Medical Genetics  2006;7:62.
Background
Betacellulin is a member of the epidermal growth factor family, expressed at the highest levels predominantly in the pancreas and thought to be involved in islet neogenesis and regeneration. Nonsynonymous coding variants were reported to be associated with type 2 diabetes in African American subjects. We tested the hypotheses that these previously identified variants were associated with type 2 diabetes in African Americans ascertained in Arkansas and that they altered insulin secretion in glucose tolerant African American subjects.
Methods
We typed three variants, exon1 Cys7Gly (C7G), exon 2 Leu44Phe (L44F), and exon 4 Leu124Met (L124M), in 188 control subjects and 364 subjects with type 2 diabetes. We tested for altered insulin secretion in 107 subjects who had undergone intravenous glucose tolerance tests to assess insulin sensitivity and insulin secretion.
Results
No variant was associated with type 2 diabetes, and no variant altered insulin secretion or insulin sensitivity. However, an effect on lipids was observed for all 3 variants, and variant L124M was associated with obesity measures.
Conclusion
We were unable to confirm a role for nonsynonymous variants of betacellulin in the propensity to type 2 diabetes or to impaired insulin secretion.
doi:10.1186/1471-2350-7-62
PMCID: PMC1544326  PMID: 16869959

Results 1-25 (86)