PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (120)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  TCF7L2 variant genotypes and type 2 diabetes risk in Brazil: significant association, but not a significant tool for risk stratification in the general population 
BMC Medical Genetics  2008;9:106.
Background
Genetic polymorphisms of the TCF7L2 gene are strongly associated with large increments in type 2 diabetes risk in different populations worldwide. In this study, we aimed to confirm the effect of the TCF7L2 polymorphism rs7903146 on diabetes risk in a Brazilian population and to assess the use of this genetic marker in improving diabetes risk prediction in the general population.
Methods
We genotyped the single nucleotide polymorphisms (SNP) rs7903146 of the TCF7L2 gene in 560 patients with known coronary disease enrolled in the MASS II (Medicine, Angioplasty, or Surgery Study) Trial and in 1,449 residents of Vitoria, in Southeast Brazil. The associations of this gene variant to diabetes risk and metabolic characteristics in these two different populations were analyzed. To access the potential benefit of using this marker for diabetes risk prediction in the general population we analyzed the impact of this genetic variant on a validated diabetes risk prediction tool based on clinical characteristics developed for the Brazilian general population.
Results
SNP rs7903146 of the TCF7L2 gene was significantly associated with type 2 diabetes in the MASS-II population (OR = 1.57 per T allele, p = 0.0032), confirming, in the Brazilian population, previous reports of the literature. Addition of this polymorphism to an established clinical risk prediction score did not increased model accuracy (both area under ROC curve equal to 0.776).
Conclusion
TCF7L2 rs7903146 T allele is associated with a 1.57 increased risk for type 2 diabetes in a Brazilian cohort of patients with known coronary heart disease. However, the inclusion of this polymorphism in a risk prediction tool developed for the general population resulted in no improvement of performance. This is the first study, to our knowledge, that has confirmed this recent association in a South American population and adds to the great consistency of this finding in studies around the world. Finally, confirming the biological association of a genetic marker does not guarantee improvement on already established screening tools based solely on demographic variables.
doi:10.1186/1471-2350-9-106
PMCID: PMC2632659  PMID: 19055834
2.  Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with Type 2 Diabetes and fasting glucose; The NHLBI Family Heart Study 
BMC Medical Genetics  2008;9:46.
Background
The chromosome 7q32 region is linked to metabolic syndrome and obesity related traits in the Family Heart Study. As part of a fine mapping study of the region, we evaluated the relationship of polymorphisms to fasting glucose levels and Type 2 diabetes.
Methods
Thirty-nine HapMap defined tag SNPs in a 1.08 Mb region and a novel deletion polymorphism were genotyped in 2,603 participants of the NHLBI Family Heart Study (FHS). Regression modeling, adjusting for BMI, age, sex, smoking and the TCF7L2 polymorphism, was used to evaluate the association of these polymorphisms with T2D and fasting glucoses levels.
Results
The deletion polymorphism confers a protective effect for T2D, with homozygous deletion carriers having a 53% reduced risk compared to non-deleted carriers. Among non-diabetics, the deletion was significantly associated with lower fasting glucose levels in men (p = 0.038) but not women (p = 0.118). In addition, seven SNPs near the deletion were significantly associated (p < 0.01) to diabetes.
Conclusion
Chromosome 7q32 contains both SNPs and a deletion that were associated to T2D. Although the deletion region contains several islands of strongly conserved sequence, it is not known to contain a transcribed gene. The closest nearby gene, EXOC4, is involved in insulin-stimulated glucose transport and may be a candidate for this association. Further work is needed to determine if the deletion represents a functional variant or may be in linkage disequilibrium with a functional mutation influencing EXOC4 or another nearby gene.
doi:10.1186/1471-2350-9-46
PMCID: PMC2409301  PMID: 18498660
3.  Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population 
Background
Recent studies have implicated variants of the transcription factor 7-like 2 (TCF7L2) gene in genetic susceptibility to type 2 diabetes mellitus in several different populations. The aim of this study was to determine whether variants of this gene are also risk factors for type 2 diabetes development in a UK-resident South Asian cohort of Punjabi ancestry.
Methods
We genotyped four single nucleotide polymorphisms (SNPs) of TCF7L2 (rs7901695, rs7903146, rs11196205 and rs12255372) in 831 subjects with diabetes and 437 control subjects.
Results
The minor allele of each variant was significantly associated with type 2 diabetes; the greatest risk of developing the disease was conferred by rs7903146, with an allelic odds ratio (OR) of 1.31 (95% CI: 1.11 – 1.56, p = 1.96 × 10-3). For each variant, disease risk associated with homozygosity for the minor allele was greater than that for heterozygotes, with the exception of rs12255372. To determine the effect on the observed associations of including young control subjects in our data set, we reanalysed the data using subsets of the control group defined by different minimum age thresholds. Increasing the minimum age of our control subjects resulted in a corresponding increase in OR for all variants of the gene (p ≤ 1.04 × 10-7).
Conclusion
Our results support recent findings that TCF7L2 is an important genetic risk factor for the development of type 2 diabetes in multiple ethnic groups.
doi:10.1186/1471-2350-9-8
PMCID: PMC2276194  PMID: 18291022
4.  Folliculin mutations are not associated with severe COPD 
BMC Medical Genetics  2008;9:120.
Background
Rare loss-of-function folliculin (FLCN) mutations are the genetic cause of Birt-Hogg-Dubé syndrome, a monogenic disorder characterized by spontaneous pneumothorax, fibrofolliculomas, and kidney tumors. Loss-of-function folliculin mutations have also been described in pedigrees with familial spontaneous pneumothorax. Because the majority of patients with folliculin mutations have radiographic evidence of pulmonary cysts, folliculin has been hypothesized to contribute to the development of emphysema.
To determine whether folliculin sequence variants are risk factors for severe COPD, we genotyped seven previously reported Birt-Hogg-Dubé or familial spontaneous pneumothorax associated folliculin mutations in 152 severe COPD probands participating in the Boston Early-Onset COPD Study. We performed bidirectional resequencing of all 14 folliculin exons in a subset of 41 probands and subsequently genotyped four identified variants in an independent sample of345 COPD subjects from the National Emphysema Treatment Trial (cases) and 420 male smokers with normal lung function from the Normative Aging Study (controls).
Results
None of the seven previously reported Birt-Hogg-Dubé or familial spontaneous pneumothorax mutations were observed in the 152 severe, early-onset COPD probands. Exon resequencing identified 31 variants, including two non-synonymous polymorphisms and two common non-coding polymorphisms. No significant association was observed for any of these four variants with presence of COPD or emphysema-related phenotypes.
Conclusion
Genetic variation in folliculin does not appear to be a major risk factor for severe COPD. These data suggest that familial spontaneous pneumothorax and COPD have distinct genetic causes, despite some overlap in radiographic characteristics.
doi:10.1186/1471-2350-9-120
PMCID: PMC2636779  PMID: 19116017
5.  Association analyses of the interaction between the ADSS and ATM genes with schizophrenia in a Chinese population 
BMC Medical Genetics  2008;9:119.
Background
The blood-derived RNA levels of the adenylosuccinate synthase (ADSS) and ataxia telangiectasia mutated (ATM) genes were found to be down- and up-regulated, respectively, in schizophrenics compared with controls, and ADSS and ATM were among eight biomarker genes to discriminate schizophrenics from normal controls. ADSS catalyzes the first committed step of AMP synthesis, while ATM kinase serves as a key signal transducer in the DNA double-strand breaks response pathway. It remains unclear whether these changes result from mutations or polymorphisms in the two genes.
Methods
Six SNPs in the ADSS gene and three SNPs in the ATM gene in a Chinese population of 488 schizophrenics and 516 controls were genotyped to examine their association with schizophrenia (SZ). Genotyping was performed using the Sequenom platform.
Results
There was no significant difference in the genotype, allele, or haplotype distributions of the nine SNPs between cases and controls. Using the Multifactor Dimensionality Reduction (MDR) method, we found that the interactions among rs3102460 in the ADSS gene and rs227061 and rs664143 in the ATM gene revealed a significant association with SZ. This model held a maximum testing accuracy of 60.4% and a maximum cross-validation consistency of 10 out of 10.
Conclusion
These findings suggest that the combined effects of the polymorphisms in the ADSS and ATM genes may confer susceptibility to the development of SZ in a Chinese population.
doi:10.1186/1471-2350-9-119
PMCID: PMC2654671  PMID: 19115993
6.  Lack of association between PKLR rs3020781 and NOS1AP rs7538490 and type 2 diabetes, overweight, obesity and related metabolic phenotypes in a Danish large-scale study: case-control studies and analyses of quantitative traits 
BMC Medical Genetics  2008;9:118.
Background
Several studies in multiple ethnicities have reported linkage to type 2 diabetes on chromosome 1q21-25. Both PKLR encoding the liver pyruvate kinase and NOS1AP encoding the nitric oxide synthase 1 (neuronal) adaptor protein (CAPON) are positioned within this chromosomal region and are thus positional candidates for the observed linkage peak. The C-allele of PKLR rs3020781 and the T-allele of NOS1AP rs7538490 are reported to strongly associate with type 2 diabetes in various European-descent populations comprising a total of 2,198 individuals with a combined odds ratio (OR) of 1.33 [1.16–1.54] and 1.53 [1.28–1.81], respectively. Our aim was to validate these findings by investigating the impact of the two variants on type 2 diabetes and related quantitative metabolic phenotypes in a large study sample of Danes. Further, we intended to expand the analyses by examining the effect of the variants in relation to overweight and obesity.
Methods
PKLR rs3020781 and NOS1AP rs7538490 were genotyped, using TaqMan allelic discrimination, in a combined study sample comprising a total of 16,801 and 16,913 individuals, respectively. The participants were ascertained from four different study groups; the population-based Inter99 cohort (nPKLR = 5,962, nNOS1AP = 6,008), a type 2 diabetic patient group (nPKLR = 1,873, nNOS1AP = 1,874) from Steno Diabetes Center, a population-based study sample (nPKLR = 599, nNOS1AP = 596) from Steno Diabetes Center and the ADDITION Denmark screening study cohort (nPKLR = 8,367, nNOS1AP = 8,435).
Results
In case-control studies we evaluated the potential association between rs3020781 and rs7538490 and type 2 diabetes and obesity. No significant associations were observed for type 2 diabetes (rs3020781: pAF = 0.49, OR = 1.02 [0.96–1.10]; rs7538490: pAF = 0.84, OR = 0.99 [0.93–1.06]). Neither did we show association with overweight or obesity. Additionally, the PKLR and the NOS1AP genotypes were demonstrated not to have a major influence on diabetes-related quantitative metabolic phenotypes.
Conclusion
We failed to provide evidence of an association between PKLR rs3020781 and NOS1AP rs7538490 and type 2 diabetes, overweight, obesity or related quantitative metabolic phenotypes in large-scale studies of Danes.
doi:10.1186/1471-2350-9-118
PMCID: PMC2654670  PMID: 19111066
7.  INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and poor response to resistance training in men 
BMC Medical Genetics  2008;9:117.
Background
A common SNP upstream of the INSIG2 gene, rs7566605 (g.-10,1025G>C, Chr2:118,552,255, NT_022135.15), was reported to be associated with obesity (Body Mass Index, [BMI]) in a genome-wide association scan using the Framingham Heart Study but has not been reproduced in other cohorts. As BMI is a relatively insensitive measure of adiposity that is subject to many confounding variables, we sought to determine the relationship between the INSIG2 SNP and subcutaneous fat volumes measured by MRI in a young adult population.
Methods
We genotyped the INSIG2 SNP rs7566605 in college-aged population enrolled in a controlled resistance-training program, (the Functional Polymorphism Associated with Human Muscle Size and Strength, FAMuSS cohort, n = 752 volunteers 18–40 yrs). In this longitudinal study, we examined the effect of the INSIG2 polymorphism on subcutaneous fat and muscle volumes of the upper arm measured by magnetic resonance imaging (MRI) before and after 12 wks of resistance training. Gene/phenotype associations were tested using an analysis of covariance model with age and weight as covariates. Further, the % variation in each phenotype attributable to genotype was determined using hierarchical models and tested with a likelihood ratio test.
Results
Women with a copy of the C allele had higher levels of baseline subcutaneous fat (GG: n = 139; 243473 ± 5713 mm3 vs. GC/CC: n = 181; 268521 ± 5003 mm3; p = 0.0011); but men did not show any such association. Men homozygous for the G ancestral allele showed a loss of subcutaneous fat, while those with one or two copies of the C allele gained a greater percentage of subcutaneous fat with resistance training (GG: n = 103; 1.02% ± 1.74% vs. GC/CC: n = 93; 6.39% ± 1.82%; p = 0.035).
Conclusion
Our results show that the INSIG2 rs7566605 polymorphism underlies variation in subcutaneous adiposity in young adult women and suppresses the positive effects of resistance training on men. This supports and extends the original finding that there is an association between measures of obesity and INSIG2 rs7566605 and further implicates this polymorphism in fat regulation.
doi:10.1186/1471-2350-9-117
PMCID: PMC2646703  PMID: 19105843
8.  An intronic alteration of the fibroblast growth factor 10 gene causing ALSG-(aplasia of lacrimal and salivary glands) syndrome 
BMC Medical Genetics  2008;9:114.
Background
A combined aplasia, hypoplasia or atresia of lacrimal points and salivary glands is rarely diagnosed. Those patients suffer from epiphora, xerostomia and severe dental caries. This phenotype represents the autosomal-dominant aplasia of lacrimal and salivary glands syndrome (ALSG). Recently, aberrations of the Fibroblast Growth Factor 10 (FGF10) gene have been identified to be causative for this disorder.
Methods
We performed a sequence analysis of the FGF10 gene of a patient with ALSG-syndrome and his also affected brother as well as 193 controls. The FGF10 transcript was analyzed using RNA extracted from primary fibroblasts of the patient's mucosa.
Results
We detected a novel heterozygous sequence variation in intron 2 (c.430-1, G > A) causing the ALSG syndrome. The alteration derogates the regular splice acceptor site and leads to the use of a new splice acceptor site 127 bp upstream of exon 3. The aberration was detected in the genomic DNA derived from two affected brothers, but not in 193 control individuals. Furthermore, no diseased member of the family displayed additional abnormalities that are indicative for the clinically overlapping lacrimo-auriculo-dento-digital syndrome (LADD).
Conclusion
This family-based approach revealed an intronic variation of the FGF10 gene causing ALSG-syndrome. Our results expand the mutational and clinical spectrum of the ALSG syndrome.
doi:10.1186/1471-2350-9-114
PMCID: PMC2626586  PMID: 19102732
9.  Selecting a BRCA risk assessment model for use in a familial cancer clinic 
BMC Medical Genetics  2008;9:116.
Background
Risk models are used to calculate the likelihood of carrying a BRCA1 or BRCA2 mutation. We evaluated the performances of currently-used risk models among patients from a large familial program using the criteria of high sensitivity, simple data collection and entry and BRCA score reporting.
Methods
Risk calculations were performed by applying the BRCAPRO, Manchester, Penn II, Myriad II, FHAT, IBIS and BOADICEA models to 200 non-BRCA carriers and 100 BRCA carriers, consecutively tested between August 1995 and March 2006. Areas under the receiver operating characteristic curves (AUCs) were determined and sensitivity and specificity were calculated at the conventional testing thresholds. In addition, subset analyses were performed for low and high risk probands.
Results
The BRCAPRO, Penn II, Myriad II, FHAT and BOADICEA models all have similar AUCs of approximately 0.75 for BRCA status. The Manchester and IBIS models have lower AUCs (0. and 0.47 respectively). At the conventional testing thresholds, the sensitivities and specificities for a BRCA mutation were, respectively, as follows: BRCAPRO (0.75, 0.62), Manchester (0.58,0.71), Penn II (0.93,0.31), Myriad II (0.71,0.63), FHAT (0.70,0.63), IBIS (0.20,0.74), BOADICEA (0.70, 0.65).
Conclusion
The Penn II model most closely met the criteria we established and this supports the use of this model for identifying individuals appropriate for genetic testing at our facility. These data are applicable to other familial clinics provided that variations in sample populations are taken into consideration.
doi:10.1186/1471-2350-9-116
PMCID: PMC2630980  PMID: 19102775
10.  DNA methylation and mRNA expression of SYN III, a candidate gene for schizophrenia 
BMC Medical Genetics  2008;9:115.
Background
The synapsin III (SYN III) gene on chromosome 22q is a candidate gene for schizophrenia susceptibility due to its chromosome location, neurological function, expression patterns and functional polymorphisms.
Methods
This research has established the mRNA expression of SYN III in 22 adult human brain regions as well as the methylation specificity in the closest CpG island of this gene. The methylation specificity studied in 31 brain regions (from a single individual) was also assessed in 51 human blood samples (representing 20 people affected with schizophrenia and 31 normal controls) including a pair of monozygotic twin discordant for schizophrenia and 2 non-human primates.
Results
The results show that the cytosine methylation in this genomic region is 1) restricted to cytosines in CpG dinucleotides 2) similar in brain regions and blood and 3) appears conserved in primate evolution. Two cytosines (cytosine 8 and 20) localized as the CpG dinucleotide are partially methylated in all brain regions studied. The methylation of these sites in schizophrenia and control blood samples was variable. While cytosine 8 was partially methylated in all samples, the distribution of partial to complete methylation at the cytosine 20 was 22:9 in controls as compared to 18:2 in schizophrenia (p = 0.82). Also, there is no difference in methylation between the affected and unaffected member of a monozygotic twin pair.
Conclusion
The variation in SYN III methylation studied is 1) not related to schizophrenia in the population sample or a monozygotic twin pair discordant for schizophrenia and 2) not related to the mRNA level of SYN IIIa in different human brain regions.
doi:10.1186/1471-2350-9-115
PMCID: PMC2630979  PMID: 19102774
11.  Genome wide association for substance dependence: convergent results from epidemiologic and research volunteer samples 
BMC Medical Genetics  2008;9:113.
Background
Dependences on addictive substances are substantially-heritable complex disorders whose molecular genetic bases have been partially elucidated by studies that have largely focused on research volunteers, including those recruited in Baltimore. Maryland. Subjects recruited from the Baltimore site of the Epidemiological Catchment Area (ECA) study provide a potentially-useful comparison group for possible confounding features that might arise from selecting research volunteer samples of substance dependent and control individuals. We now report novel SNP (single nucleotide polymorphism) genome wide association (GWA) results for vulnerability to substance dependence in ECA participants, who were initially ascertained as members of a probability sample from Baltimore, and compare the results to those from ethnically-matched Baltimore research volunteers.
Results
We identify substantial overlap between the home address zip codes reported by members of these two samples. We find overlapping clusters of SNPs whose allele frequencies differ with nominal significance between substance dependent vs control individuals in both samples. These overlapping clusters of nominally-positive SNPs identify 172 genes in ways that are never found by chance in Monte Carlo simulation studies. Comparison with data from human expressed sequence tags suggests that these genes are expressed in brain, especially in hippocampus and amygdala, to extents that are greater than chance.
Conclusion
The convergent results from these probability sample and research volunteer sample datasets support prior genome wide association results. They fail to support the idea that large portions of the molecular genetic results for vulnerability to substance dependence derive from factors that are limited to research volunteers.
doi:10.1186/1471-2350-9-113
PMCID: PMC2637238  PMID: 19094236
12.  Genetic polymorphisms are associated with serum levels of sex hormone binding globulin in postmenopausal women 
BMC Medical Genetics  2008;9:112.
Background
Estrogen activity plays a critical role in bone homeostasis. The serum levels of sex hormone binding globulin (SHBG) influence free estrogen levels and activity on target tissues. The objective of this study was to analyze the influence of common polymorphisms of the SHBG gene on serum SHBG, bone mineral density (BMD), and osteoporotic fractures.
Methods
Four biallelic polymorphisms of the SHBG gene were studied by means of Taqman assays in 753 postmenopausal women. BMD was measured by DXA and serum SHBG was measured by ELISA.
Results
Age, body weight, and two polymorphisms of the SHBG gene (rs6257 and rs1799941 [A/G]) were significantly associated with serum SHBG in unadjusted and age- and weight-adjusted models. Alleles at the rs1799941 locus showed the strongest association with serum SHBG (p = 0.0004). The difference in SHBG levels between women with AA and GG genotypes at the rs1799941 locus was 39%. There were no significant differences in BMD across SHBG genotypes. The genotypes showed similar frequency distributions in control women and women with vertebral or hip fractures.
Conclusion
Some common genetic variants of the SHBG gene, and particularly an A/G polymorphism situated in the 5' region, influence serum SHBG levels. However, a significant association with BMD or osteoporotic fractures has not been demonstrated.
doi:10.1186/1471-2350-9-112
PMCID: PMC2615755  PMID: 19091090
13.  Investigation of Gamma-aminobutyric acid (GABA) A receptors genes and migraine susceptibility 
BMC Medical Genetics  2008;9:109.
Background
Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ), which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE) and type θ (GABRQ) genes and their involvement in migraine.
Methods
We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls) examining a set of 3 single nucleotide polymorphisms (SNPs) in the coding region (exons 3, 5 and 9) of the GABRE gene and also the I478F coding variant of the GABRQ gene.
Results
Our study did not show any association between the examined SNPs in our test population (P > 0.05).
Conclusion
Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.
doi:10.1186/1471-2350-9-109
PMCID: PMC2615754  PMID: 19087248
14.  Association between Ngb polymorphisms and ischemic stroke in the Southern Chinese Han population 
BMC Medical Genetics  2008;9:110.
Background
Neuroglobin (Ngb), one of novel members of the globin superfamily, is expressed predominantly in brain neurons, and appears to modulate hypoxic-ischemic insults. The mechanisms underlying Ngb-mediated neuronal protection are still unclear. For it is one of the candidate protective factors for ischemic stroke, we conducted a case-control study to clarify the association of Ngb polymorphisms with ischemic stroke in the Southern Chinese Han population.
Methods
355 cases and 158 controls were recruited. With brain imaging, cases were subdivided into large-artery atherosclerosis (LVD) and small-vessel occlusion (SVD) stroke. PCR amplified all the four exons of Ngb and flanking intron sequence for each exon. Genotyping for Ngb was achieved by direct sequencing and mismatched PCR-RFLP. Polymorphisms were studied both individually and as haplotypes in each group and subgroup which subdivided according to gender or age.
Results
Two intronic polymorphisms 89+104 c>t and 322-110 (6a)>5a were identified. The allele frequency of 89+104 t was decreased in stroke cases. The protective effect seems to be more pronounced in subgroups of female patients and age > 60 years. Also, we have confirmed decreased LDL-C level and reduced hypertension and hypercholesterolemia in 89+104 t allele carriers. In contrast, the 322-110 (6a)>5a genotype distribution was similar between cases and controls. However, the haplotype 89+104 c>t/322-110 (6a)>5a was related with LVD and SVD stroke. The haplotype c-5a was more frequent in both LVD and SVD groups while t-6a was more frequent in controls.
Conclusion
Ngb polymorphism 89+104 t had protective effects on LVD and SVD in the Southern Chinese Han population. A "hitchhiking" effect was observed for the 89+104 t/322-110 (6a) genotype combination especially for LVD.
doi:10.1186/1471-2350-9-110
PMCID: PMC2639551  PMID: 19087291
15.  Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder 
BMC Medical Genetics  2008;9:111.
Background
Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD.
Methods
Case-control association study was performed with seven SNPs from the IL10 gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited.
Results
None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the IL10 gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (IL20 and IL24 genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097).
Conclusion
Our study established increased risk for MDD related to the IL20 and IL24 haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation.
doi:10.1186/1471-2350-9-111
PMCID: PMC2648955  PMID: 19087313
16.  No germline mutations in supposed tumour suppressor genes SAFB1 and SAFB2 in familial breast cancer with linkage to 19p 
BMC Medical Genetics  2008;9:108.
Background
The scaffold attachment factor B1 and B2 genes, SAFB1/SAFB2 (both located on chromosome 19p13.3) have recently been suggested as tumour suppressor genes involved in breast cancer development. The assumption was based on functional properties of the two genes and loss of heterozygosity of intragenic markers in breast tumours further strengthened the postulated hypothesis. In addition, linkage studies in Swedish breast cancer families also indicate the presence of a susceptibility gene for breast cancer at the 19p locus. Somatic mutations in SAFB1/SAFB2 have been detected in breast tumours, but to our knowledge no studies on germline mutations have been reported. In this study we investigated the possible involvement of SAFB1/SAFB2 on familiar breast cancer by inherited mutations in either of the two genes.
Results
Mutation analysis in families showing linkage to the SAFB1/2 locus was performed by DNA sequencing. The complete coding sequence of the two genes SAFB1 and SAFB2 was analyzed in germline DNA from 31 affected women. No missense or frameshift mutations were detected. One polymorphism was found in SAFB1 and eight polymorphisms were detected in SAFB2. MLPA-anlysis showed that both alleles of the two genes were preserved which excludes gene inactivation by large deletions.
Conclusion
SAFB1 and SAFB2 are not likely to be causative of the hereditary breast cancer syndrome in west Swedish breast cancer families.
doi:10.1186/1471-2350-9-108
PMCID: PMC2635354  PMID: 19077293
17.  Genomic NGFB variation and multiple sclerosis in a case control study 
BMC Medical Genetics  2008;9:107.
Background
Nerve growth factor β (NGFB) is involved in cell proliferation and survival, and it is a mediator of the immune response. ProNGF, the precursor protein of NGFB, has been shown to induce cell death via interaction with the p75 neurotrophin receptor. In addition, this neurotrophin is differentially expressed in males and females. Hence NGFB is a good candidate to influence the course of multiple sclerosis (MS), much like in the murine model of experimental autoimmune encephalomyelitis (EAE).
Methods
Ten single nucleotide polymorphisms (SNPs) were genotyped in the NGFB gene in up to 1120 unrelated MS patients and 869 controls. Expression analyses were performed for selected MS patients in order to elucidate the possible functional relevance of the SNPs.
Results
Significant association of NGFB variations with MS is evident for two SNPs. NGFB mRNA seems to be expressed in sex- and disease progression-related manner in peripheral blood mononuclear cells.
Conclusion
NGFB variation and expression levels appear as modulating factors in the development of MS.
doi:10.1186/1471-2350-9-107
PMCID: PMC2613874  PMID: 19063739
18.  Assessment of the feasibility of exon 45–55 multiexon skipping for duchenne muscular dystrophy 
BMC Medical Genetics  2008;9:105.
Background
The specific skipping of an exon, induced by antisense oligonucleotides (AON) during splicing, has shown to be a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients. As different mutations require skipping of different exons, this approach is mutation dependent. The skipping of an entire stretch of exons (e.g. exons 45 to 55) has recently been suggested as an approach applicable to larger groups of patients. However, this multiexon skipping approach is technically challenging. The levels of intended multiexon skips are typically low and highly variable, and may be dependent on the order of intron removal. We hypothesized that the splicing order might favor the induction of multiexon 45–55 skipping.
Methods
We here tested the feasibility of inducing multiexon 45–55 in control and patient muscle cell cultures using various AON cocktails.
Results
In all experiments, the exon 45–55 skip frequencies were minimal and comparable to those observed in untreated cells.
Conclusion
We conclude that current state of the art does not sufficiently support clinical development of multiexon skipping for DMD.
doi:10.1186/1471-2350-9-105
PMCID: PMC2611974  PMID: 19046429
19.  Human genetic selection on the MTHFR 677C>T polymorphism 
BMC Medical Genetics  2008;9:104.
Background
The prevalence of genotypes of the 677C>T polymorphism for the MTHFR gene varies among humans. In previous studies, we found changes in the genotypic frequencies of this polymorphism in populations of different ages, suggesting that this could be caused by an increase in the intake of folate and multivitamins by women during the periconceptional period. The aim was to analyze changes in the allelic frequencies of this polymorphism in a Spanish population, including samples from spontaneous abortions (SA).
Methods
A total of 1305 subjects born in the 20th century were genotyped for the 677C>T polymorphism using allele specific real-time PCR with Taqman® probes. A section of our population (n = 276) born in 1980–1989 was compared with fetal samples (n = 344) from SA of unknown etiology from the same period.
Results
An increase in the frequency of the T allele (0.38 vs 0.47; p < 0.001) and of the TT genotype (0.14 vs 0.24; p < 0.001) in subjects born in the last quarter of the century was observed. In the 1980–1989 period, the results show that the frequency of the wild type genotype (CC) is about tenfold lower in the SA samples than in the controls (0.03 vs 0.33; p < 0.001) and that the frequency of the TT genotype increases in the controls (0.19 to 0.27) and in the SA samples (0.20 to 0.33 (p < 0.01)); r = 0.98.
Conclusion
Selection in favor of the T allele has been detected. This selection could be due to the increased fetal viability in early stages of embryonic development, as is deduced by the increase of mutants in both living and SA populations.
doi:10.1186/1471-2350-9-104
PMCID: PMC2610030  PMID: 19040733
20.  A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family 
BMC Medical Genetics  2008;9:102.
Background
Grebe-type chondrodysplasia (GCD) is a rare autosomal recessive syndrome characterized by severe acromesomelic limb shortness with non-functional knob like fingers resembling toes. Mutations in the cartilage-derived morphogenetic protein 1 (CDMP1) gene cause Grebe-type chondrodysplasia.
Methods
Genotyping of six members of a Pakistani family with Grebe-type chondrodysplasia, including two affected and four unaffected individuals, was carried out by using polymorphic microsatellite markers, which are closely linked to CDMP1 locus on chromosome 20q11.22. To screen for a mutation in CDMP1 gene, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the family and sequenced directly in an ABI Prism 310 automated DNA sequencer.
Results
Genotyping results showed linkage of the family to CDMP1 locus. Sequence analysis of the CDMP1 gene identified a novel four bases insertion mutation (1114insGAGT) in exon 2 of the gene causing frameshift and premature termination of the polypeptide.
Conclusion
We describe a 4 bp novel insertion mutation in CDMP1 gene in a Pakistani family with Grebe-type chondrodysplasia. Our findings extend the body of evidence that supports the importance of CDMP1 in the development of limbs.
doi:10.1186/1471-2350-9-102
PMCID: PMC2611973  PMID: 19038017
21.  QTLs of factors of the metabolic syndrome and echocardiographic phenotypes: the hypertension genetic epidemiology network study 
BMC Medical Genetics  2008;9:103.
Background
In a previous study of the Hypertension Genetic Epidemiology Network (HyperGEN) we have shown that metabolic syndrome (MetS) risk factors were moderately and significantly associated with echocardiographic (ECHO) left ventricular (LV) phenotypes.
Methods
The study included 1,393 African Americans and 1,133 whites, stratified by type 2 diabetes mellitus (DM) status. Heritabilities of seven factor scores based on the analysis of 15 traits were sufficiently high to pursue QTL discovery in this follow-up study.
Results
Three of the QTLs discovered relate to combined MetS-ECHO factors of "blood pressure (BP)-LV wall thickness" on chromosome 3 at 225 cM with a 2.8 LOD score, on chromosome 20 at 2.1 cM with a 2.6 LOD score; and for "LV wall thickness" factor on chromosome 16 at 113.5 with a 2.6 LOD score in whites. The remaining QTLs include one for a "body mass index-insulin (BMI-INS)" factor with a LOD score of 3.9 on chromosome 2 located at 64.8 cM; one for the same factor on chromosome 12 at 91.4 cM with a 3.3 LOD score; one for a "BP" factor on chromosome 19 located at 67.8 cM with a 3.0 LOD score. A suggestive linkage was also found for "Lipids-INS" with a 2.7 LOD score located on chromosome 11 at 113.1 cM in African Americans. Of the above QTLs, the one on chromosome 12 for "BMI-INS" is replicated in both ethnicities, (with highest LOD scores in African Americans). In addition, the QTL for "LV wall thickness" on chromosome 16q24.2-q24.3 reached its local maximum LOD score at marker D16S402, which is positioned within the 5th intron of the cadherin 13 gene, implicated in heart and vascular remodeling.
Conclusion
Our previous study and this follow-up suggest gene loci for some crucial MetS and cardiac geometry risk factors that contribute to the risk of developing heart disease.
doi:10.1186/1471-2350-9-103
PMCID: PMC2626585  PMID: 19038053
22.  Broad phenotypic spectrum in familial adenomatous polyposis; from early onset and severe phenotypes to late onset of attenuated polyposis with the first manifestation at age 72 
BMC Medical Genetics  2008;9:101.
Background
Familial adenomatous polyposis (FAP) is typically characterized by multiple colonic polyps and frequent extracolonic features. Whereas the number of colonic polyps has been linked to the APC gene mutation, possible genotype-phenotype correlations largely remain to be defined for the extracolonic manifestations.
Methods
Full genomic sequencing combined with multiplex ligation-dependent probe amplification was used to identify APC gene mutations, which were correlated to the clinical presentations.
Results
10 novel APC gene mutations were identified in 11 families. A broad spectrum of extracolonic manifestations was identified in most of these individuals. Two sisters with an insertion in codon 528 (c.1582_1583insGC) both showed severe phenotypes with classical polyposis, upper gastrointestinal polyps and thyroid cancer. A woman with a 3'APC mutation (c.5030_5031insAA) developed colon cancer at age 72 as the first manifestation of attenuated FAP.
Conclusion
With an increasing number of FAP families diagnosed, a broad and variable tumor spectrum and a high frequency of extracolonic manifestations are gradually recognized. We report novel APC mutations and present two FAP cases that suggest familial aggregation of thyroid cancer and demonstrate the need to consider attenuated FAP also among elderly patients with colon cancer.
doi:10.1186/1471-2350-9-101
PMCID: PMC2610029  PMID: 19036155
23.  SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention – the TULIP Study 
BMC Medical Genetics  2008;9:100.
Background
Sirtuin1 (SIRT1) regulates gene expression in distinct metabolic pathways and mediates beneficial effects of caloric restriction in animal models. In humans, SIRT1 genetic variants associate with fasting energy expenditure. To investigate the relevance of SIRT1 for human metabolism and caloric restriction, we analyzed SIRT1 genetic variants in respect to the outcome of a controlled lifestyle intervention in Caucasians at risk for type 2 diabetes.
Methods
A total of 1013 non-diabetic Caucasians from the Tuebingen Family Study (TUEF) were genotyped for four tagging SIRT1 SNPs (rs730821, rs12413112, rs7069102, rs2273773) for cross-sectional association analyses with prediabetic traits. SNPs that associated with basal energy expenditure in the TUEF cohort were additionally analyzed in 196 individuals who underwent a controlled lifestyle intervention (Tuebingen Lifestyle Intervention Program; TULIP). Multivariate regressions analyses with adjustment for relevant covariates were performed to detect associations of SIRT1 variants with the changes in anthropometrics, weight, body fat or metabolic characteristics (blood glucose, insulin sensitivity, insulin secretion and liver fat, measured by magnetic resonance techniques) after the 9-month follow-up test in the TULIP study.
Results
Minor allele (X/A) carriers of rs12413112 (G/A) had a significantly lower basal energy expenditure (p = 0.04) and an increased respiratory quotient (p = 0.02). This group (rs12413112: X/A) was resistant against lifestyle-induced improvement of fasting plasma glucose (GG: -2.01%, X/A: 0.53%; p = 0.04), had less increase in insulin sensitivity (GG: 17.3%, X/A: 9.6%; p = 0.05) and an attenuated decline in liver fat (GG: -38.4%, X/A: -7.5%; p = 0.01).
Conclusion
SIRT1 plays a role for the individual lifestyle intervention response, possibly owing to decreased basal energy expenditure and a lower lipid-oxidation rate in rs12413112 X/A allele carriers. SIRT1 genetic variants may, therefore, represent a relevant determinant for the response rate of individuals undergoing caloric restriction and increased physical activity.
doi:10.1186/1471-2350-9-100
PMCID: PMC2626584  PMID: 19014491
24.  A novel HSF4 gene mutation (p.R405X) causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan 
BMC Medical Genetics  2008;9:99.
Background
Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667). Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene.
Methods
A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438) was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4) were sequenced. A mutation-specific restriction enzyme digest (HphI) was performed for all family members and unrelated controls.
Results
The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X).
Conclusion
We identified the first nonsense mutation (p.R405X) in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.
doi:10.1186/1471-2350-9-99
PMCID: PMC2592245  PMID: 19014451
25.  Birth weight and blood lipid levels in Spanish adolescents: Influence of selected APOE, APOC3 and PPARgamma2 gene polymorphisms. The AVENA Study 
BMC Medical Genetics  2008;9:98.
Background
There is increasing evidence indicating that genes involved in certain metabolic processes of cardiovascular diseases may be of particular influence in people with low body weight at birth. We examined whether the apolipoprotein (APO) E, APOC3 and the peroxisome proliferator-activated receptor-γ-2 (PPARγ2) polymorphisms influence the association between low birth weight and blood lipid levels in healthy adolescents aged 13–18.5 years.
Methods
A cross-sectional study of 502 Spanish adolescents born at term was conducted. Total (TC) and high density lipoprotein cholesterol (HDLc), triglycerides (TG), apolipoprotein (apo) A and B, and lipoprotein(a) [Lp(a)] were measured. Low density lipoprotein cholesterol (LDLc), TC-HDLc, TC/HDLc and apoB/apoA were calculated.
Results
Low birth weight was associated with higher levels of TC, LDLc, apoB, Lp(a), TC-HDLc, TC/HDLc and apoB/apoA in males with the APOE ε3ε4 genotype, whereas in females, it was associated with lower HDLc and higher TG levels. In males with the APOC3 S1/S2 genotype, low birth weight was associated with lower apoA and higher Lp(a), yet this association was not observed in females. There were no associations between low birth weight and blood lipids in any of the PPARγ2 genotypes.
Conclusion
The results indicate that low birth weight has a deleterious influence on lipid profile particularly in adolescents with the APOE ε3/ε4 genotype. These findings suggest that intrauterine environment interact with the genetic background affecting the lipid profile in later life.
doi:10.1186/1471-2350-9-98
PMCID: PMC2615435  PMID: 19000312

Results 1-25 (120)