PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study 
BMC Medical Genetics  2013;14:98.
Background
Multiple genome-wide association studies (GWAS) within European populations have implicated common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2 diabetes in the U.S.
Methods
As part of the 'Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (AI), and 811 Asians. We estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by meta-analysis to combine results across PAGE sites.
Results
Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 × 10-15), versus 3/9 in AA (p= 0.03 to 6 × 10-5), 3/4 SNPs in Hispanics, 2/4 SNPs in AI, and 1/2 SNPs in Asians. For insulin we observed a significant association with rs780094/GCKR in EA, Hispanics and AI only.
Conclusions
Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient power, or to unique patterns of linkage disequilibrium.
doi:10.1186/1471-2350-14-98
PMCID: PMC3849560  PMID: 24063630
2.  Race-ethnic differences in the association of genetic loci with HbA1c levels and mortality in U.S. adults: the third National Health and Nutrition Examination Survey (NHANES III) 
BMC Medical Genetics  2012;13:30.
Background
Hemoglobin A1c (HbA1c) levels diagnose diabetes, predict mortality and are associated with ten single nucleotide polymorphisms (SNPs) in white individuals. Genetic associations in other race groups are not known. We tested the hypotheses that there is race-ethnic variation in 1) HbA1c-associated risk allele frequencies (RAFs) for SNPs near SPTA1, HFE, ANK1, HK1, ATP11A, FN3K, TMPRSS6, G6PC2, GCK, MTNR1B; 2) association of SNPs with HbA1c and 3) association of SNPs with mortality.
Methods
We studied 3,041 non-diabetic individuals in the NHANES (National Health and Nutrition Examination Survey) III. We stratified the analysis by race/ethnicity (NHW: non-Hispanic white; NHB: non-Hispanic black; MA: Mexican American) to calculate RAF, calculated a genotype score by adding risk SNPs, and tested associations with SNPs and the genotype score using an additive genetic model, with type 1 error = 0.05.
Results
RAFs varied widely and at six loci race-ethnic differences in RAF were significant (p < 0.0002), with NHB usually the most divergent. For instance, at ATP11A, the SNP RAF was 54% in NHB, 18% in MA and 14% in NHW (p < .0001). The mean genotype score differed by race-ethnicity (NHW: 10.4, NHB: 11.0, MA: 10.7, p < .0001), and was associated with increase in HbA1c in NHW (β = 0.012 HbA1c increase per risk allele, p = 0.04) and MA (β = 0.021, p = 0.005) but not NHB (β = 0.007, p = 0.39). The genotype score was not associated with mortality in any group (NHW: OR (per risk allele increase in mortality) = 1.07, p = 0.09; NHB: OR = 1.04, p = 0.39; MA: OR = 1.03, p = 0.71).
Conclusion
At many HbA1c loci in NHANES III there is substantial RAF race-ethnic heterogeneity. The combined impact of common HbA1c-associated variants on HbA1c levels varied by race-ethnicity, but did not influence mortality.
doi:10.1186/1471-2350-13-30
PMCID: PMC3433372  PMID: 22540250
3.  Genome-wide association with select biomarker traits in the Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S11.
Background
Systemic biomarkers provide insights into disease pathogenesis, diagnosis, and risk stratification. Many systemic biomarker concentrations are heritable phenotypes. Genome-wide association studies (GWAS) provide mechanisms to investigate the genetic contributions to biomarker variability unconstrained by current knowledge of physiological relations.
Methods
We examined the association of Affymetrix 100K GeneChip single nucleotide polymorphisms (SNPs) to 22 systemic biomarker concentrations in 4 biological domains: inflammation/oxidative stress; natriuretic peptides; liver function; and vitamins. Related members of the Framingham Offspring cohort (n = 1012; mean age 59 ± 10 years, 51% women) had both phenotype and genotype data (minimum-maximum per phenotype n = 507–1008). We used Generalized Estimating Equations (GEE), Family Based Association Tests (FBAT) and variance components linkage to relate SNPs to multivariable-adjusted biomarker residuals. Autosomal SNPs (n = 70,987) meeting the following criteria were studied: minor allele frequency ≥ 10%, call rate ≥ 80% and Hardy-Weinberg equilibrium p ≥ 0.001.
Results
With GEE, 58 SNPs had p < 10-6: the top SNPs were rs2494250 (p = 1.00*10-14) and rs4128725 (p = 3.68*10-12) for monocyte chemoattractant protein-1 (MCP1), and rs2794520 (p = 2.83*10-8) and rs2808629 (p = 3.19*10-8) for C-reactive protein (CRP) averaged from 3 examinations (over about 20 years). With FBAT, 11 SNPs had p < 10-6: the top SNPs were the same for MCP1 (rs4128725, p = 3.28*10-8, and rs2494250, p = 3.55*10-8), and also included B-type natriuretic peptide (rs437021, p = 1.01*10-6) and Vitamin K percent undercarboxylated osteocalcin (rs2052028, p = 1.07*10-6). The peak LOD (logarithm of the odds) scores were for MCP1 (4.38, chromosome 1) and CRP (3.28, chromosome 1; previously described) concentrations; of note the 1.5 support interval included the MCP1 and CRP SNPs reported above (GEE model). Previous candidate SNP associations with circulating CRP concentrations were replicated at p < 0.05; the SNPs rs2794520 and rs2808629 are in linkage disequilibrium with previously reported SNPs. GEE, FBAT and linkage results are posted at .
Conclusion
The Framingham GWAS represents a resource to describe potentially novel genetic influences on systemic biomarker variability. The newly described associations will need to be replicated in other studies.
doi:10.1186/1471-2350-8-S1-S11
PMCID: PMC1995615  PMID: 17903293
4.  The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports 
BMC Medical Genetics  2007;8(Suppl 1):S1.
Background
The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.
Methods
Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.
Results
The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at .
Conclusion
We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.
doi:10.1186/1471-2350-8-S1-S1
PMCID: PMC1995613  PMID: 17903291
5.  A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S10.
Background
Glomerular filtration rate (GFR) and urinary albumin excretion (UAE) are markers of kidney function that are known to be heritable. Many endocrine conditions have strong familial components. We tested for association between the Affymetrix GeneChip Human Mapping 100K single nucleotide polymorphism (SNP) set and measures of kidney function and endocrine traits.
Methods
Genotype information on the Affymetrix GeneChip Human Mapping 100K SNP set was available on 1345 participants. Serum creatinine and cystatin-C (cysC; n = 981) were measured at the seventh examination cycle (1998–2001); GFR (n = 1010) was estimated via the Modification of Diet in Renal Disease (MDRD) equation; UAE was measured on spot urine samples during the sixth examination cycle (1995–1998) and was indexed to urinary creatinine (n = 822). Thyroid stimulating hormone (TSH) was measured at the third and fourth examination cycles (1981–1984; 1984–1987) and mean value of the measurements were used (n = 810). Age-sex-adjusted and multivariable-adjusted residuals for these measurements were used in association with genotype data using generalized estimating equations (GEE) and family-based association tests (FBAT) models. We presented the results for association tests using additive allele model. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg Equilibrium p-value ≥ 0.001, and call rates of at least 80%.
Results
The top SNPs associated with these traits using the GEE method were rs2839235 with GFR (p-value 1.6*10-05), rs1158167 with cysC (p-value 8.5*10-09), rs1712790 with UAE (p-value 1.9*10-06), and rs6977660 with TSH (p-value 3.7*10-06), respectively. The top SNPs associated with these traits using the FBAT method were rs6434804 with GFR(p-value 2.4*10-5), rs563754 with cysC (p-value 4.7*10-5), rs1243400 with UAE (p-value 4.8*10-6), and rs4128956 with TSH (p-value 3.6*10-5), respectively. Detailed association test results can be found at . Four SNPs in or near the CST3 gene were highly associated with cysC levels (p-value 8.5*10-09 to 0.007).
Conclusion
Kidney function traits and TSH are associated with SNPs on the Affymetrix GeneChip Human Mapping 100K SNP set. These data will serve as a valuable resource for replication as more SNPs associated with kidney function and endocrine traits are identified.
doi:10.1186/1471-2350-8-S1-S10
PMCID: PMC1995611  PMID: 17903292
6.  Genome-wide association with diabetes-related traits in the Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S16.
Background
Susceptibility to type 2 diabetes may be conferred by genetic variants having modest effects on risk. Genome-wide fixed marker arrays offer a novel approach to detect these variants.
Methods
We used the Affymetrix 100K SNP array in 1,087 Framingham Offspring Study family members to examine genetic associations with three diabetes-related quantitative glucose traits (fasting plasma glucose (FPG), hemoglobin A1c, 28-yr time-averaged FPG (tFPG)), three insulin traits (fasting insulin, HOMA-insulin resistance, and 0–120 min insulin sensitivity index); and with risk for diabetes. We used additive generalized estimating equations (GEE) and family-based association test (FBAT) models to test associations of SNP genotypes with sex-age-age2-adjusted residual trait values, and Cox survival models to test incident diabetes.
Results
We found 415 SNPs associated (at p < 0.001) with at least one of the six quantitative traits in GEE, 242 in FBAT (18 overlapped with GEE for 639 non-overlapping SNPs), and 128 associated with incident diabetes (31 overlapped with the 639) giving 736 non-overlapping SNPs. Of these 736 SNPs, 439 were within 60 kb of a known gene. Additionally, 53 SNPs (of which 42 had r2 < 0.80 with each other) had p < 0.01 for incident diabetes AND (all 3 glucose traits OR all 3 insulin traits, OR 2 glucose traits and 2 insulin traits); of these, 36 overlapped with the 736 other SNPs. Of 100K SNPs, one (rs7100927) was in moderate LD (r2 = 0.50) with TCF7L2 (rs7903146), and was associated with risk of diabetes (Cox p-value 0.007, additive hazard ratio for diabetes = 1.56) and with tFPG (GEE p-value 0.03). There were no common (MAF > 1%) 100K SNPs in LD (r2 > 0.05) with ABCC8 A1369S (rs757110), KCNJ11 E23K (rs5219), or SNPs in CAPN10 or HNFa. PPARG P12A (rs1801282) was not significantly associated with diabetes or related traits.
Conclusion
Framingham 100K SNP data is a resource for association tests of known and novel genes with diabetes and related traits posted at . Framingham 100K data replicate the TCF7L2 association with diabetes.
doi:10.1186/1471-2350-8-S1-S16
PMCID: PMC1995610  PMID: 17903298

Results 1-6 (6)