PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Analysis of the contribution of FTO, NPC1, ENPP1, NEGR1, GNPDA2 and MC4R genes to obesity in Mexican children 
BMC Medical Genetics  2013;14:21.
Background
Recent genome wide association studies (GWAS) and previous positional linkage studies have identified more than 50 single nucleotide polymorphisms (SNPs) associated with obesity, mostly in Europeans. We aimed to assess the contribution of some of these SNPs to obesity risk and to the variation of related metabolic traits, in Mexican children.
Methods
The association of six European obesity-related SNPs in or near FTO, NPC1, ENPP1, NEGR1, GNPDA2 and MC4R genes with risk of obesity was tested in 1,463 school-aged Mexican children (Ncases = 514; Ncontrols = 949). We also assessed effects of these SNPs on the variation of body mass index (BMI), fasting serum insulin levels, fasting plasma glucose levels, total cholesterol and triglyceride levels, in a subset of 1,171 nonobese Mexican children.
Results
We found a significant effect of GNPDA2 rs10938397 on risk of obesity (odds ratio [OR] = 1.30; P = 1.34 × 10-3). Furthermore, we found nominal associations between obesity risk or BMI variation and the following SNPs: ENPP1 rs7754561, MC4R rs17782313 and NEGR1 rs2815752. Importantly, the at-risk alleles of both MC4R rs17782313 and NPC1 rs1805081 showed significant effect on increased fasting glucose levels (β = 0.36 mmol/L; P = 1.47 × 10-3) and decreased fasting serum insulin levels (β = −0.10 μU/mL; P = 1.21 × 10-3), respectively.
Conclusion
Our present results suggest that some obesity-associated SNPs previously reported in Europeans also associate with risk of obesity, or metabolic quantitative traits, in Mexican children. Importantly, we found new associations between MC4R and fasting glucose levels, and between NPC1 and fasting insulin levels.
doi:10.1186/1471-2350-14-21
PMCID: PMC3577489  PMID: 23375129
Obesity; Mexican children; Single nucleotide polymorphism
2.  Bio-Repository of DNA in stroke (BRAINS): A study protocol 
BMC Medical Genetics  2011;12:34.
Background
Stroke is one of the commonest causes of mortality in the world and anticipated to be an increasing burden to the developing world. Stroke has a genetic basis and identifying those genes may not only help us define the mechanisms that cause stroke but also identify novel therapeutic targets. However, large scale highly phenotyped DNA repositories are required in order for this to be achieved.
Methods
The proposed Bio-Repository of DNA in Stroke (BRAINS) will recruit all subtypes of stroke as well as controls from two different continents, Europe and Asia. Subjects recruited from the UK will include stroke patients of European ancestry as well as British South Asians. Stroke subjects from South Asia will be recruited from India and Sri Lanka. South Asian cases will also have control subjects recruited.
Discussion
We describe a study protocol to establish a large and highly characterized stroke biobank in those of European and South Asian descent. With different ethnic populations being recruited, BRAINS has the ability to compare and contrast genetic risk factors between those of differing ancestral descent as well as those who migrate into different environments.
doi:10.1186/1471-2350-12-34
PMCID: PMC3061889  PMID: 21366918
3.  PLCL1 rs7595412 variation is not associated with hip bone size variation in postmenopausal Danish women 
BMC Medical Genetics  2009;10:145.
Background
Bone size (BS) variation is under strong genetic control and plays an important role in determining bone strength and fracture risk. Recently, a genome-wide association study identified polymorphisms associated with hip BS variation in the PLCL1 (phospholipase c-like 1) locus. Carriers of the major A allele of the most significant polymorphism, rs7595412, have around 17% larger hip BS than non-carriers. We therefore hypothesized that this polymorphism may also influence postmenopausal complications.
Methods
The effects of rs7595412 on hip BS, bone mineral density (BMD), vertebral fractures, serum Crosslaps and osteocalcin levels were analyzed in 1,191 postmenopausal Danish women.
Results
This polymorphism had no influence on hip and spine BS as well as on femur and spine BMD. Women carrying at least one copy of the A allele had lower levels of serum osteocalcin as compared with those homozygous for the G allele (p = 0.03) whereas no effect on serum Crosslaps was detected. Furthermore, women homozygous for the A allele were more affected by vertebral fractures than those carrying at least one copy of the G allele (p = 0.04).
Conclusions
In postmenopausal women, our results suggest that the PLCL1 rs7595412 polymorphism has no obvious effect on hip BS or BMD but may be nominally associated with increased proportion of vertebral fracture and increased levels of osteocalcin.
doi:10.1186/1471-2350-10-145
PMCID: PMC2803169  PMID: 20030815
4.  Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study 
BMC Medical Genetics  2009;10:33.
Background
Candidate gene and genome-wide association studies have both reproducibly identified several common Single Nucleotide Polymorphisms (SNPs) that confer type 2 diabetes (T2D) risk in European populations. Our aim was to evaluate the contribution to T2D of five of these established T2D-associated loci in the Arabic population from Tunisia.
Methods
A case-control design comprising 884 type 2 diabetic patients and 513 control subjects living in the East-Center of Tunisia was used to analyze the contribution to T2D of the following SNPs: E23K in KCNJ11/Kir6.2, K121Q in ENPP1, the -30G/A variant in the pancreatic β-cell specific promoter of Glucokinase, rs7903146 in TCF7L2 encoding transcription factor 7-like2, and rs7923837 in HHEX encoding the homeobox, hematopoietically expressed transcription factor.
Results
TCF7L2-rs7903146 T allele increased susceptibility to T2D (OR = 1.25 [1.06–1.47], P = 0.006) in our study population. This risk was 56% higher among subjects carrying the TT genotype in comparison to those carrying the CC genotype (OR = 1.56 [1.13–2.16], P = 0.002). No allelic or genotypic association with T2D was detected for the other studied polymorphisms.
Conclusion
In the Tunisian population, TCF7L2-rs7903146 T allele confers an increased risk of developing T2D as previously reported in the European population and many other ethnic groups. In contrast, none of the other tested SNPs that influence T2D risk in the European population was associated with T2D in the Tunisian Arabic population. An insufficient power to detect minor allelic contributions or genetic heterogeneity of T2D between different ethnic groups can explain these findings.
doi:10.1186/1471-2350-10-33
PMCID: PMC2678106  PMID: 19368707
5.  Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study 
BMC Medical Genetics  2009;10:27.
Background
Liver X receptor alpha (LXRA) and beta (LXRB) regulate glucose and lipid homeostasis in model systems but their importance in human physiology is poorly understood. This project aimed to determine whether common genetic variations in LXRA and LXRB associate with type 2 diabetes (T2D) and quantitative measures of glucose homeostasis, and, if so, reveal the underlying mechanisms.
Methods
Eight common single nucleotide polymorphisms in LXRA and LXRB were analyzed for association with T2D in one French cohort (N = 988 cases and 941 controls), and for association with quantitative measures reflecting glucose homeostasis in two non-diabetic population-based samples comprising N = 697 and N = 1344 adults. Investigated quantitative phenotypes included fasting plasma glucose, serum insulin, and HOMAIR as measure of overall insulin resistance. An oral glucose tolerance test was performed in N = 1344 of adults. The two alleles of the proximal LXRB promoter, differing only at the SNP rs17373080, were cloned into reporter vectors and transiently transfected, whereupon allele-specific luciferase activity was measured. rs17373080 overlapped, according to in silico analysis, with a binding site for Nuclear factor 1 (NF1). Promoter alleles were tested for interaction with NF1 using direct DNA binding and transactivation assays.
Results
Genotypes at two LXRB promoter SNPs, rs35463555 and rs17373080, associated nominally with T2D (P values 0.047 and 0.026). No LXRA or LXRB SNP associated with quantitative measures reflecting glucose homeostasis. The rs17373080 C allele displayed higher basal transcription activity (P value < 0.05). The DNA-mobility shift assay indicated that oligonucleotides corresponding to either rs17373080 allele bound NF1 transcription factors in whole cell extracts to the same extent. Different NF1 family members showed different capacity to transactivate the LXRB gene promoter, but there was no difference between promoter alleles in NF1 induced transactivation activity.
Conclusion
Variations in the LXRB gene promoter may be part of the aetiology of T2D. However, the association between LXRB rs35463555 and rs17373080, and T2D are preliminary and needs to be investigated in additional larger cohorts. Common genetic variation in LXRA is unlikely to affect the risk of developing T2D or quantitative phenotypes related to glucose homeostasis.
doi:10.1186/1471-2350-10-27
PMCID: PMC2664799  PMID: 19292929
6.  Evaluating the association of common APOA2 variants with type 2 diabetes 
BMC Medical Genetics  2009;10:13.
Background
APOA2 is a positional and biological candidate gene for type 2 diabetes at the chromosome 1q21-q24 susceptibility locus. The aim of this study was to examine if HapMap phase II tag SNPs in APOA2 are associated with type 2 diabetes and quantitative traits in French Caucasian subjects.
Methods
We genotyped the three HapMap phase II tagging SNPs (rs6413453, rs5085 and rs5082) required to capture the common variation spanning the APOA2 locus in our type 2 diabetes case-control cohort comprising 3,093 French Caucasian subjects. The association between these variants and quantitative traits was also examined in the normoglycaemic adults of the control cohort. In addition, meta-analysis of publicly available whole genome association data was performed.
Results
None of the APOA2 tag SNPs were associated with type 2 diabetes in the French Caucasian case-control cohort (rs6413453, P = 0.619; rs5085, P = 0.245; rs5082, P = 0.591). However, rs5082 was marginally associated with total cholesterol levels (P = 0.026) and waist-to-hip ratio (P = 0.029). The meta-analysis of data from 12,387 subjects confirmed our finding that common variation at the APOA2 locus is not associated with type 2 diabetes.
Conclusion
The available data does not support a role for common variants in APOA2 on type 2 diabetes susceptibility or related quantitative traits in Northern Europeans.
doi:10.1186/1471-2350-10-13
PMCID: PMC2650681  PMID: 19216768
7.  The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies 
BMC Medical Genetics  2008;9:45.
Background
Considering that a portion of the heterogeneity amongst previous replication studies may be due to a variable proportion of obese subjects in case-control designs, we assessed the association of genetic variants with type 2 diabetes (T2D) in large groups of obese and non-obese subjects.
Methods
We genotyped RETN, KCNJ11, HNF4A, HNF1A, GCK, SLC30A8, ENPP1, ADIPOQ, PPARG, and TCF7L2 polymorphisms in 1,283 normoglycemic (NG) and 1,581 T2D obese individuals as well as in 3,189 NG and 1,244 T2D non-obese subjects of European descent, allowing us to examine T2D risk over a wide range of BMI.
Results
Amongst non-obese individuals, we observed significant T2D associations with HNF1A I27L [odds ratio (OR) = 1.14, P = 0.04], GCK -30G>A (OR = 1.23, P = 0.01), SLC30A8 R325W (OR = 0.87, P = 0.04), and TCF7L2 rs7903146 (OR = 1.89, P = 4.5 × 10-23), and non-significant associations with PPARG Pro12Ala (OR = 0.85, P = 0.14), ADIPOQ -11,377C>G (OR = 1.00, P = 0.97) and ENPP1 K121Q (OR = 0.99, P = 0.94). In obese subjects, associations with T2D were detected with PPARG Pro12Ala (OR = 0.73, P = 0.004), ADIPOQ -11,377C>G (OR = 1.26, P = 0.02), ENPP1 K121Q (OR = 1.30, P = 0.003) and TCF7L2 rs7903146 (OR = 1.30, P = 1.1 × 10-4), and non-significant associations with HNF1A I27L (OR = 0.96, P = 0.53), GCK -30G>A (OR = 1.15, P = 0.12) and SLC30A8 R325W (OR = 0.95, P = 0.44). However, a genotypic heterogeneity was only found for TCF7L2 rs7903146 (P = 3.2 × 10-5) and ENPP1 K121Q (P = 0.02). No association with T2D was found for KCNJ11, RETN, and HNF4A polymorphisms in non-obese or in obese individuals.
Conclusion
Genetic variants modulating insulin action may have an increased effect on T2D susceptibility in the presence of obesity, whereas genetic variants acting on insulin secretion may have a greater impact on T2D susceptibility in non-obese individuals.
doi:10.1186/1471-2350-9-45
PMCID: PMC2412856  PMID: 18498634
8.  Evaluating the association of common PBX1 variants with type 2 diabetes 
BMC Medical Genetics  2008;9:14.
Background
PBX1 is a biological candidate gene for type 2 diabetes at the 1q21-q24 susceptibility locus. The aim of this study was to evaluate the association of common PBX1 variants with type 2 diabetes in French Caucasian subjects.
Methods
Employing a case-control design, we genotyped 39 SNPs spanning the PBX1 locus in 3,093 subjects to test for association with type 2 diabetes.
Results
Several PBX1 SNPs, including the G21S coding SNP rs2275558, were nominally associated with type 2 diabetes but the strongest result was obtained with the intron 2 SNP rs2792248 (P = 0.004, OR 1.20 [95% CI 1.06–1.37]). The SNPSpD multiple testing correction method gave a significance threshold of P = 0.002 for the 39 SNPs genotyped, indicating that the rs2792248 association did not survive multiple testing adjustment. SNP rs2792248 did not show evidence of association with the French 1q linkage signal (P = 0.31; weighted NPL score 2.16). None of the PBX1 SNPs nominally associated with type 2 diabetes were associated with a range of quantitative metabolic traits in the normoglycemic control subjects
Conclusion
The available data does not support a major influence of common PBX1 variants on type 2 diabetes susceptibility or quantitative metabolic traits. In order to make progress in identifying the elusive susceptibility variants in the 1q region it will be necessary to carry out further large association studies, meta-analyses of existing data from individual studies, and deep resequencing of the 1q region.
doi:10.1186/1471-2350-9-14
PMCID: PMC2292156  PMID: 18312624
9.  Analysis of KLF transcription factor family gene variants in type 2 diabetes 
BMC Medical Genetics  2007;8:53.
Background
The Krüppel-like factor (KLF) family consists of transcription factors that can activate or repress different genes implicated in processes such as differentiation, development, and cell cycle progression. Moreover, several of these proteins have been implicated in glucose homeostasis, making them candidate genes for involvement in type 2 diabetes (T2D).
Methods
Variants of nine KLF genes were genotyped in T2D cases and controls and analysed in a two-stage study. The first case-control set included 365 T2D patients with a strong family history of T2D and 363 normoglycemic individuals and the second set, 750 T2D patients and 741 normoglycemic individuals, all of French origin. The SNPs of six KLF genes were genotyped by Taqman® SNP Genotyping Assays. The other three KLF genes (KLF2, -15 and -16) were screened and the identified frequent variants of these genes were analysed in the case-control studies.
Results
Three of the 28 SNPs showed a trend to be associated with T2D in our first case-control set (P < 0.10). These SNPs, located in the KLF2, KLF4 and KLF5 gene were then analysed in our second replication set, but analysis of this set and the combined analysis of the three variants in all 2,219 individuals did not show an association with T2D in this French population. As the KLF2, -15 and -16 variants were representative for the genetic variability in these genes, we conclude they do not contribute to genetic susceptibility for T2D.
Conclusion
It is unlikely that variants in different members of the KLF gene family play a major role in T2D in the French population.
doi:10.1186/1471-2350-8-53
PMCID: PMC1994949  PMID: 17688680
10.  Secretory granule neuroendocrine protein 1 (SGNE1) genetic variation and glucose intolerance in severe childhood and adult obesity 
BMC Medical Genetics  2007;8:44.
Background
7B2 is a regulator/activator of the prohormone convertase 2 which is involved in the processing of numerous neuropeptides, including insulin, glucagon and pro-opiomelanocortin. We have previously described a suggestive genetic linkage peak with childhood obesity on chr15q12-q14, where the 7B2 encoding gene, SGNE1 is located. The aim of this study is to analyze associations of SGNE1 genetic variation with obesity and metabolism related quantitative traits.
Methods
We screened SGNE1 for genetic variants in obese children and genotyped 12 frequent single nucleotide polymorphisms (SNPs). Case control analyses were performed in 1,229 obese (534 children and 695 adults), 1,535 individuals with type 2 diabetes and 1,363 controls, all French Caucasians. We also studied 4,922 participants from the D.E.S.I.R prospective population-based cohort.
Results
We did not find any association between SGNE1 SNPs and childhood or adult obesity. However, the 5' region SNP -1,701A>G associated with higher area under glucose curve after oral glucose tolerance test (p = 0.0005), higher HOMA-IR (p = 0.005) and lower insulinogenic index (p = 0.0003) in obese children. Similar trends were found in obese adults. SNP -1,701A>G did not associate with risk of T2D but tends to associate with incidence of type 2 diabetes (HR = 0.75 95%CI [0.55–1.01]; p = 0.06) in the prospective cohort.
Conclusion
SGNE1 genetic variation does not contribute to obesity and common forms of T2D but may worsen glucose intolerance and insulin resistance, especially in the background of severe and early onset obesity. Further molecular studies are required to understand the molecular bases involved in this process.
doi:10.1186/1471-2350-8-44
PMCID: PMC1936990  PMID: 17617923
11.  TCF7L2 rs7903146 variant does not associate with smallness for gestational age in the French population 
BMC Medical Genetics  2007;8:37.
Background
In adults, the TCF7L2 rs7903146 T allele, commonly associated with type 2 diabetes (T2D), has been also associated with a lower body mass index (BMI) in T2D individuals and with a smaller waist circumference in subjects with impaired glucose tolerance.
Methods
The present association study aimed at analyzing the contribution of the rs7903146 SNP to smallness for gestational age (SGA) and metabolic profiles in subjects with SGA or appropriate for gestational age birth weight (AGA). Two groups of French Caucasian subjects were selected on birth data: SGA (birth weight < 10th percentile; n = 764), and AGA (25th < birth weight < 75th percentile; n = 627). Family-based association tests were also performed in 3,012 subjects from 628 SGA and AGA pedigrees.
Results
The rs7903146 genotypic distributions between AGA (30.7%) and SGA (29.0%) were not statistically different (allelic OR = 0.92 [0.78–1.09], p = 0.34). Family association-based studies did not show a distortion of T allele transmission in SGA subjects (p = 0.52). No significant effect of the T allele was detected on any of the metabolic parameters in the SGA group. However, in the AGA group, trends towards a lower insulin secretion (p = 0.03) and a higher fasting glycaemia (p = 0.002) were detected in carriers of the T allele.
Conclusion
The TCF7L2 rs7903146 variant neither increases the risk for SGA nor modulates birth weight and young adulthood glucose homeostasis in French Caucasian subjects born with SGA.
doi:10.1186/1471-2350-8-37
PMCID: PMC1920504  PMID: 17593304
12.  Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population 
BMC Medical Genetics  2006;7:44.
Background
The protein tyrosine phosphatase-1B, a negative regulator for insulin and leptin signalling, potentially modulates glucose and energy homeostasis. PTP1B is encoded by the PTPN1 gene located on chromosome 20q13 showing linkage with type 2 diabetes (T2D) in several populations. PTPN1 gene variants have been inconsistently associated with T2D, and the aim of our study was to investigate the effect of PTPN1 genetic variations on the risk of T2D, obesity and on the variability of metabolic phenotypes in the French population.
Methods
Fourteen single nucleotide polymorphisms (SNPs) spanning the PTPN1 locus were selected from previous association reports and from HapMap linkage disequilibrium data. SNPs were evaluated for association with T2D in two case-control groups with 1227 cases and 1047 controls. Association with moderate and severe obesity was also tested in a case-control study design. Association with metabolic traits was evaluated in 736 normoglycaemic, non-obese subjects from a general population. Five SNPs showing a trend towards association with T2D, obesity or metabolic parameters were investigated for familial association.
Results
From 14 SNPs investigated, only SNP rs914458, located 10 kb downstream of the PTPN1 gene significantly associated with T2D (p = 0.02 under a dominant model; OR = 1.43 [1.06–1.94]) in the combined sample set. SNP rs914458 also showed association with moderate obesity (allelic p = 0.04; OR = 1.2 [1.01–1.43]). When testing for association with metabolic traits, two strongly correlated SNPs, rs941798 and rs2426159, present multiple consistent associations. SNP rs2426159 exhibited evidence of association under a dominant model with glucose homeostasis related traits (p = 0.04 for fasting insulin and HOMA-B) and with lipid markers (0.02 = p = 0.04). Moreover, risk allele homozygotes for this SNP had an increased systolic blood pressure (p = 0.03). No preferential transmission of alleles was observed for the SNPs tested in the family sample.
Conclusion
In our study, PTPN1 variants showed moderate association with T2D and obesity. However, consistent associations with metabolic variables reflecting insulin resistance and dyslipidemia are found for two intronic SNPs as previously reported. Thus, our data indicate that PTPN1 variants may modulate the lipid profile, thereby influencing susceptibility to metabolic disease.
doi:10.1186/1471-2350-7-44
PMCID: PMC1525165  PMID: 16677372
13.  Implication of the Pro12Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population 
BMC Medical Genetics  2005;6:11.
Background
The Pro12Ala Single Nucleotide Polymorphism (SNP) of the Peroxisome Proliferator-Activated Receptor gamma 2 (PPAR-gamma 2) has been associated with insulin resistance and type 2 diabetes (T2D) and also inconsistently with obesity. The aim of this study was to evaluate the impact of this SNP with regards to T2D and childhood and adult obesity in the French Caucasian population.
Methods
We conducted three independent case/control studies encompassing 2126 cases and 1124 controls.
Results
We found a significant association between PPAR-gamma 2 Pro12Ala SNP and T2D (p = 0.04, OR = 1.37), which was stronger when the T2D cohort was stratified according to the obesity status (p = 0.03, OR = 1.81 in obese T2D subjects). In contrast, there was no association between the Pro12Ala SNP and childhood and adulthood obesity. In normal glucose tolerant obese adults (but not in lean subjects), the Pro12 allele was associated with a significant increase in fasting insulin levels (p = 0.01), and in insulin resistance estimated by the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) (p = 0.003), after adjustment for age, gender and BMI. We didn't detect evidence for an interaction effect between the Pro12Ala SNP and the obesity status with respect to the HOMA-IR index in normal glucose tolerant children, but we found a borderline interaction (p = 0.06) in normal glucose tolerant adults.
Conclusion
Our results showed that the Pro12Ala polymorphism is not associated with childhood or adult obesity in the French Caucasian population. In contrast, we confirm a contribution of the PPAR-gamma 2 Pro12 allele in the genetic risk forT2D, especially in obese subjects, where this allele worsens insulin resistanceand increases fasting insulin levels.
doi:10.1186/1471-2350-6-11
PMCID: PMC1084346  PMID: 15784141

Results 1-13 (13)