Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)
Year of Publication
Document Types
1.  Heritability and genome-wide association analysis of renal sinus fat accumulation in the Framingham Heart Study 
BMC Medical Genetics  2011;12:148.
Ectopic fat accumulation in the renal sinus is associated with chronic kidney disease and hypertension. The genetic contributions to renal sinus fat accumulation in humans have not been well characterized.
The present analysis consists of participants from the Framingham Offspring and Third Generation who underwent computed tomography; renal sinus fat and visceral adipose tissue (VAT) were quantified. Renal sinus fat was natural log transformed and sex- and cohort-specific residuals were created, adjusted for (1) age, (2) age and body mass index (BMI), and (3) age and VAT. Residuals were pooled and used to calculate heritability using variance-components analysis in SOLAR. A genome-wide association study (GWAS) for renal sinus fat was performed using an additive model with approximately 2.5 million imputed single nucleotide polymorphisms (SNPs). Finally, we identified the associations of renal sinus fat in our GWAS results with validated SNPs for renal function (n = 16), BMI (n = 32), and waist-to-hip ratio (WHR, n = 14), and applied a multi-SNP genetic risk score method to determine if the SNPs for each renal and obesity trait were in aggregate associated with renal sinus fat.
The heritability of renal sinus fat was 39% (p < 0.0001); results were not materially different after adjustment for BMI (39%) or VAT (40%). No SNPs reached genome-wide significance in our GWAS. In our candidate gene analysis, we observed nominal, direction consistent associations with renal sinus fat for one SNP associated with renal function (p = 0.01), two associated with BMI (p < 0.03), and two associated with WHR (p < 0.03); however, none remained significant after accounting for multiple testing. Finally, we observed that in aggregate, the 32 SNPs associated with BMI were nominally associated with renal sinus fat (multi-SNP genetic risk score p = 0.03).
Renal sinus fat is a heritable trait, even after accounting for generalized and abdominal adiposity. This provides support for further research into the genetic determinants of renal sinus fat. While our study was underpowered to detect genome-wide significant loci, our candidate gene BMI risk score results suggest that variability in renal sinus fat may be associated with SNPs previously known to be associated with generalized adiposity.
PMCID: PMC3243045  PMID: 22044751
2.  Genome-wide association study for renal traits in the Framingham Heart and Atherosclerosis Risk in Communities Studies 
BMC Medical Genetics  2008;9:49.
The Framingham Heart Study (FHS) recently obtained initial results from the first genome-wide association scan for renal traits. The study of 70,987 single nucleotide polymorphisms (SNPs) in 1,010 FHS participants provides a list of SNPs showing the strongest associations with renal traits which need to be verified in independent study samples.
Sixteen SNPs were selected for replication based on the most promising associations with chronic kidney disease (CKD), estimated glomerular filtration rate (eGFR), and serum cystatin C in FHS. These SNPs were genotyped in 15,747 participants of the Atherosclerosis in Communities (ARIC) Study and evaluated for association using multivariable adjusted regression analyses. Primary outcomes in ARIC were CKD and eGFR. Secondary prospective analyses were conducted for association with kidney disease progression using multivariable adjusted Cox proportional hazards regression. The definition of the outcomes, all covariates, and the use of an additive genetic model was consistent with the original analyses in FHS.
The intronic SNP rs6495446 in the gene MTHFS was significantly associated with CKD among white ARIC participants at visit 4: the odds ratio per each C allele was 1.24 (95% CI 1.09–1.41, p = 0.001). Borderline significant associations of rs6495446 were observed with CKD at study visit 1 (p = 0.024), eGFR at study visits 1 (p = 0.073) and 4 (lower mean eGFR per C allele by 0.6 ml/min/1.73 m2, p = 0.043) and kidney disease progression (hazard ratio 1.13 per each C allele, 95% CI 1.00–1.26, p = 0.041). Another SNP, rs3779748 in EYA1, was significantly associated with CKD at ARIC visit 1 (odds ratio per each T allele 1.22, p = 0.01), but only with eGFR and cystatin C in FHS.
This genome-wide association study provides unbiased information implicating MTHFS as a candidate gene for kidney disease. Our findings highlight the importance of replication to identify common SNPs associated with renal traits.
PMCID: PMC2430944  PMID: 18522750
3.  Genome-wide association to body mass index and waist circumference: the Framingham Heart Study 100K project 
BMC Medical Genetics  2007;8(Suppl 1):S18.
Obesity is related to multiple cardiovascular disease (CVD) risk factors as well as CVD and has a strong familial component. We tested for association between SNPs on the Affymetrix 100K SNP GeneChip and measures of adiposity in the Framingham Heart Study.
A total of 1341 Framingham Heart Study participants in 310 families genotyped with the Affymetrix 100K SNP GeneChip had adiposity traits measured over 30 years of follow up. Body mass index (BMI), waist circumference (WC), weight change, height, and radiographic measures of adiposity (subcutaneous adipose tissue, visceral adipose tissue, waist circumference, sagittal height) were measured at multiple examination cycles. Multivariable-adjusted residuals, adjusting for age, age-squared, sex, smoking, and menopausal status, were evaluated in association with the genotype data using additive Generalized Estimating Equations (GEE) and Family Based Association Test (FBAT) models. We prioritized mean BMI over offspring examinations (1–7) and cohort examinations (10, 16, 18, 20, 22, 24, 26) and mean WC over offspring examinations (4–7) for presentation. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg equilibrium p ≥ 0.001, and call rates of at least 80%.
The top SNPs to be associated with mean BMI and mean WC by GEE were rs110683 (p-value 1.22*10-7) and rs4471028 (p-values 1.96*10-7). Please see for the complete set of results. We were able to validate SNPs in known genes that have been related to BMI or other adiposity traits, including the ESR1 Xba1 SNP, PPARG, and ADIPOQ.
Adiposity traits are associated with SNPs on the Affymetrix 100K SNP GeneChip. Replication of these initial findings is necessary. These data will serve as a resource for replication as more genes become identified with BMI and WC.
PMCID: PMC1995618  PMID: 17903300
4.  The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports 
BMC Medical Genetics  2007;8(Suppl 1):S1.
The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.
Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.
The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at .
We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.
PMCID: PMC1995613  PMID: 17903291
5.  A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S10.
Glomerular filtration rate (GFR) and urinary albumin excretion (UAE) are markers of kidney function that are known to be heritable. Many endocrine conditions have strong familial components. We tested for association between the Affymetrix GeneChip Human Mapping 100K single nucleotide polymorphism (SNP) set and measures of kidney function and endocrine traits.
Genotype information on the Affymetrix GeneChip Human Mapping 100K SNP set was available on 1345 participants. Serum creatinine and cystatin-C (cysC; n = 981) were measured at the seventh examination cycle (1998–2001); GFR (n = 1010) was estimated via the Modification of Diet in Renal Disease (MDRD) equation; UAE was measured on spot urine samples during the sixth examination cycle (1995–1998) and was indexed to urinary creatinine (n = 822). Thyroid stimulating hormone (TSH) was measured at the third and fourth examination cycles (1981–1984; 1984–1987) and mean value of the measurements were used (n = 810). Age-sex-adjusted and multivariable-adjusted residuals for these measurements were used in association with genotype data using generalized estimating equations (GEE) and family-based association tests (FBAT) models. We presented the results for association tests using additive allele model. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg Equilibrium p-value ≥ 0.001, and call rates of at least 80%.
The top SNPs associated with these traits using the GEE method were rs2839235 with GFR (p-value 1.6*10-05), rs1158167 with cysC (p-value 8.5*10-09), rs1712790 with UAE (p-value 1.9*10-06), and rs6977660 with TSH (p-value 3.7*10-06), respectively. The top SNPs associated with these traits using the FBAT method were rs6434804 with GFR(p-value 2.4*10-5), rs563754 with cysC (p-value 4.7*10-5), rs1243400 with UAE (p-value 4.8*10-6), and rs4128956 with TSH (p-value 3.6*10-5), respectively. Detailed association test results can be found at . Four SNPs in or near the CST3 gene were highly associated with cysC levels (p-value 8.5*10-09 to 0.007).
Kidney function traits and TSH are associated with SNPs on the Affymetrix GeneChip Human Mapping 100K SNP set. These data will serve as a valuable resource for replication as more SNPs associated with kidney function and endocrine traits are identified.
PMCID: PMC1995611  PMID: 17903292
6.  Genome-wide association with diabetes-related traits in the Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S16.
Susceptibility to type 2 diabetes may be conferred by genetic variants having modest effects on risk. Genome-wide fixed marker arrays offer a novel approach to detect these variants.
We used the Affymetrix 100K SNP array in 1,087 Framingham Offspring Study family members to examine genetic associations with three diabetes-related quantitative glucose traits (fasting plasma glucose (FPG), hemoglobin A1c, 28-yr time-averaged FPG (tFPG)), three insulin traits (fasting insulin, HOMA-insulin resistance, and 0–120 min insulin sensitivity index); and with risk for diabetes. We used additive generalized estimating equations (GEE) and family-based association test (FBAT) models to test associations of SNP genotypes with sex-age-age2-adjusted residual trait values, and Cox survival models to test incident diabetes.
We found 415 SNPs associated (at p < 0.001) with at least one of the six quantitative traits in GEE, 242 in FBAT (18 overlapped with GEE for 639 non-overlapping SNPs), and 128 associated with incident diabetes (31 overlapped with the 639) giving 736 non-overlapping SNPs. Of these 736 SNPs, 439 were within 60 kb of a known gene. Additionally, 53 SNPs (of which 42 had r2 < 0.80 with each other) had p < 0.01 for incident diabetes AND (all 3 glucose traits OR all 3 insulin traits, OR 2 glucose traits and 2 insulin traits); of these, 36 overlapped with the 736 other SNPs. Of 100K SNPs, one (rs7100927) was in moderate LD (r2 = 0.50) with TCF7L2 (rs7903146), and was associated with risk of diabetes (Cox p-value 0.007, additive hazard ratio for diabetes = 1.56) and with tFPG (GEE p-value 0.03). There were no common (MAF > 1%) 100K SNPs in LD (r2 > 0.05) with ABCC8 A1369S (rs757110), KCNJ11 E23K (rs5219), or SNPs in CAPN10 or HNFa. PPARG P12A (rs1801282) was not significantly associated with diabetes or related traits.
Framingham 100K SNP data is a resource for association tests of known and novel genes with diabetes and related traits posted at . Framingham 100K data replicate the TCF7L2 association with diabetes.
PMCID: PMC1995610  PMID: 17903298
7.  Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes 
BMC Medical Genetics  2007;8(Suppl 1):S5.
Cardiovascular disease (CVD) and its most common manifestations – including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) – are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.
In 1345 Framingham Heart Study participants from the largest 310 pedigrees (54% women, mean age 33 years at entry), we analyzed associations of 70,987 qualifying SNPs (Affymetrix 100K GeneChip) to four major CVD outcomes: major atherosclerotic CVD (n = 142; myocardial infarction, stroke, CHD death), major CHD (n = 118; myocardial infarction, CHD death), AF (n = 151), and HF (n = 73). Participants free of the condition at entry were included in proportional hazards models. We analyzed model-based deviance residuals using generalized estimating equations to test associations between SNP genotypes and traits in additive genetic models restricted to autosomal SNPs with minor allele frequency ≥0.10, genotype call rate ≥0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001.
Six associations yielded p < 10-5. The lowest p-values for each CVD trait were as follows: major CVD, rs499818, p = 6.6 × 10-6; major CHD, rs2549513, p = 9.7 × 10-6; AF, rs958546, p = 4.8 × 10-6; HF: rs740363, p = 8.8 × 10-6. Of note, we found associations of a 13 Kb region on chromosome 9p21 with major CVD (p 1.7 – 1.9 × 10-5) and major CHD (p 2.5 – 3.5 × 10-4) that confirm associations with CHD in two recently reported genome-wide association studies. Also, rs10501920 in CNTN5 was associated with AF (p = 9.4 × 10-6) and HF (p = 1.2 × 10-4). Complete results for these phenotypes can be found at the dbgap website .
No association attained genome-wide significance, but several intriguing findings emerged. Notably, we replicated associations of chromosome 9p21 with major CVD. Additional studies are needed to validate these results. Finding genetic variants associated with CVD may point to novel disease pathways and identify potential targeted preventive therapies.
PMCID: PMC1995607  PMID: 17903304
8.  Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI's Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S4.
Subclinical atherosclerosis (SCA) measures in multiple arterial beds are heritable phenotypes that are associated with increased incidence of cardiovascular disease. We conducted a genome-wide association study (GWAS) for SCA measurements in the community-based Framingham Heart Study.
Over 100,000 single nucleotide polymorphisms (SNPs) were genotyped (Human 100K GeneChip, Affymetrix) in 1345 subjects from 310 families. We calculated sex-specific age-adjusted and multivariable-adjusted residuals in subjects tested for quantitative SCA phenotypes, including ankle-brachial index, coronary artery calcification and abdominal aortic calcification using multi-detector computed tomography, and carotid intimal medial thickness (IMT) using carotid ultrasonography. We evaluated associations of these phenotypes with 70,987 autosomal SNPs with minor allele frequency ≥ 0.10, call rate ≥ 80%, and Hardy-Weinberg p-value ≥ 0.001 in samples ranging from 673 to 984 subjects, using linear regression with generalized estimating equations (GEE) methodology and family-based association testing (FBAT). Variance components LOD scores were also calculated.
There was no association result meeting criteria for genome-wide significance, but our methods identified 11 SNPs with p < 10-5 by GEE and five SNPs with p < 10-5 by FBAT for multivariable-adjusted phenotypes. Among the associated variants were SNPs in or near genes that may be considered candidates for further study, such as rs1376877 (GEE p < 0.000001, located in ABI2) for maximum internal carotid artery IMT and rs4814615 (FBAT p = 0.000003, located in PCSK2) for maximum common carotid artery IMT. Modest significant associations were noted with various SCA phenotypes for variants in previously reported atherosclerosis candidate genes, including NOS3 and ESR1. Associations were also noted of a region on chromosome 9p21 with CAC phenotypes that confirm associations with coronary heart disease and CAC in two recently reported genome-wide association studies. In linkage analyses, several regions of genome-wide linkage were noted, confirming previously reported linkage of internal carotid artery IMT on chromosome 12. All GEE, FBAT and linkage results are provided as an open-access results resource at .
The results from this GWAS generate hypotheses regarding several SNPs that may be associated with SCA phenotypes in multiple arterial beds. Given the number of tests conducted, subsequent independent replication in a staged approach is essential to identify genetic variants that may be implicated in atherosclerosis.
PMCID: PMC1995605  PMID: 17903303

Results 1-8 (8)