PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Genetics of coronary artery calcification among African Americans, a meta-analysis 
BMC Medical Genetics  2013;14:75.
Background
Coronary heart disease (CHD) is the major cause of death in the United States. Coronary artery calcification (CAC) scores are independent predictors of CHD. African Americans (AA) have higher rates of CHD but are less well-studied in genomic studies. We assembled the largest AA data resource currently available with measured CAC to identify associated genetic variants.
Methods
We analyzed log transformed CAC quantity (ln(CAC + 1)), for association with ~2.5 million single nucleotide polymorphisms (SNPs) and performed an inverse-variance weighted meta-analysis on results for 5,823 AA from 8 studies. Heritability was calculated using family studies. The most significant SNPs among AAs were evaluated in European Ancestry (EA) CAC data; conversely, the significance of published SNPs for CAC/CHD in EA was queried within our AA meta-analysis.
Results
Heritability of CAC was lower in AA (~30%) than previously reported for EA (~50%). No SNP reached genome wide significance (p < 5E-08). Of 67 SNPs with p < 1E-05 in AA there was no evidence of association in EA CAC data. Four SNPs in regions previously implicated in CAC/CHD (at 9p21 and PHACTR1) in EA reached nominal significance for CAC in AA, with concordant direction. Among AA, rs16905644 (p = 4.08E-05) had the strongest association in the 9p21 region.
Conclusions
While we observed substantial heritability for CAC in AA, we failed to identify loci for CAC at genome-wide significant levels despite having adequate power to detect alleles with moderate to large effects. Although suggestive signals in AA were apparent at 9p21 and additional CAC and CAD EA loci, overall the data suggest that even larger samples and an ethnic specific focus will be required for GWAS discoveries for CAC in AA populations.
doi:10.1186/1471-2350-14-75
PMCID: PMC3733595  PMID: 23870195
Atherosclerosis; Coronary artery calcium; Genetics; Meta-analysis; African-American
2.  Genome-wide association to body mass index and waist circumference: the Framingham Heart Study 100K project 
BMC Medical Genetics  2007;8(Suppl 1):S18.
Background
Obesity is related to multiple cardiovascular disease (CVD) risk factors as well as CVD and has a strong familial component. We tested for association between SNPs on the Affymetrix 100K SNP GeneChip and measures of adiposity in the Framingham Heart Study.
Methods
A total of 1341 Framingham Heart Study participants in 310 families genotyped with the Affymetrix 100K SNP GeneChip had adiposity traits measured over 30 years of follow up. Body mass index (BMI), waist circumference (WC), weight change, height, and radiographic measures of adiposity (subcutaneous adipose tissue, visceral adipose tissue, waist circumference, sagittal height) were measured at multiple examination cycles. Multivariable-adjusted residuals, adjusting for age, age-squared, sex, smoking, and menopausal status, were evaluated in association with the genotype data using additive Generalized Estimating Equations (GEE) and Family Based Association Test (FBAT) models. We prioritized mean BMI over offspring examinations (1–7) and cohort examinations (10, 16, 18, 20, 22, 24, 26) and mean WC over offspring examinations (4–7) for presentation. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg equilibrium p ≥ 0.001, and call rates of at least 80%.
Results
The top SNPs to be associated with mean BMI and mean WC by GEE were rs110683 (p-value 1.22*10-7) and rs4471028 (p-values 1.96*10-7). Please see for the complete set of results. We were able to validate SNPs in known genes that have been related to BMI or other adiposity traits, including the ESR1 Xba1 SNP, PPARG, and ADIPOQ.
Conclusion
Adiposity traits are associated with SNPs on the Affymetrix 100K SNP GeneChip. Replication of these initial findings is necessary. These data will serve as a resource for replication as more genes become identified with BMI and WC.
doi:10.1186/1471-2350-8-S1-S18
PMCID: PMC1995618  PMID: 17903300
3.  A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S17.
Background
Blood lipid levels including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes.
Methods
In 1087 Framingham Heart Study Offspring cohort participants (mean age 47 years, 52% women), we conducted genome-wide analyses (Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a ~30 year span were the primary phenotypes. We used generalized estimating equations (GEE), family-based association tests (FBAT) and variance components linkage to investigate the relationships between SNPs (on autosomes, with minor allele frequency ≥10%, genotypic call rate ≥80%, and Hardy-Weinberg equilibrium p ≥ 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs (P < 0.001 in Stage I) tested in Stage II (n ~1450 individuals) and 40 SNPs (P < 0.001 in joint analysis of Stages I and II) tested in Stage III (n~6650 individuals).
Results
Long-term averages of LDL-C, HDL-C, and TG were highly heritable (h2 = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10-5 in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10-4 ranged from 13 to 18 and with p < 10-3, from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene (LPL) and HDL-C and TG (rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association (i.e., combined P < 10-5 across all three stages) between any of the tested SNPs and lipid phenotypes.
Conclusion
Using a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects (i.e., <1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.
doi:10.1186/1471-2350-8-S1-S17
PMCID: PMC1995614  PMID: 17903299
4.  The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports 
BMC Medical Genetics  2007;8(Suppl 1):S1.
Background
The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.
Methods
Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.
Results
The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at .
Conclusion
We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.
doi:10.1186/1471-2350-8-S1-S1
PMCID: PMC1995613  PMID: 17903291
5.  Genome-wide association with diabetes-related traits in the Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S16.
Background
Susceptibility to type 2 diabetes may be conferred by genetic variants having modest effects on risk. Genome-wide fixed marker arrays offer a novel approach to detect these variants.
Methods
We used the Affymetrix 100K SNP array in 1,087 Framingham Offspring Study family members to examine genetic associations with three diabetes-related quantitative glucose traits (fasting plasma glucose (FPG), hemoglobin A1c, 28-yr time-averaged FPG (tFPG)), three insulin traits (fasting insulin, HOMA-insulin resistance, and 0–120 min insulin sensitivity index); and with risk for diabetes. We used additive generalized estimating equations (GEE) and family-based association test (FBAT) models to test associations of SNP genotypes with sex-age-age2-adjusted residual trait values, and Cox survival models to test incident diabetes.
Results
We found 415 SNPs associated (at p < 0.001) with at least one of the six quantitative traits in GEE, 242 in FBAT (18 overlapped with GEE for 639 non-overlapping SNPs), and 128 associated with incident diabetes (31 overlapped with the 639) giving 736 non-overlapping SNPs. Of these 736 SNPs, 439 were within 60 kb of a known gene. Additionally, 53 SNPs (of which 42 had r2 < 0.80 with each other) had p < 0.01 for incident diabetes AND (all 3 glucose traits OR all 3 insulin traits, OR 2 glucose traits and 2 insulin traits); of these, 36 overlapped with the 736 other SNPs. Of 100K SNPs, one (rs7100927) was in moderate LD (r2 = 0.50) with TCF7L2 (rs7903146), and was associated with risk of diabetes (Cox p-value 0.007, additive hazard ratio for diabetes = 1.56) and with tFPG (GEE p-value 0.03). There were no common (MAF > 1%) 100K SNPs in LD (r2 > 0.05) with ABCC8 A1369S (rs757110), KCNJ11 E23K (rs5219), or SNPs in CAPN10 or HNFa. PPARG P12A (rs1801282) was not significantly associated with diabetes or related traits.
Conclusion
Framingham 100K SNP data is a resource for association tests of known and novel genes with diabetes and related traits posted at . Framingham 100K data replicate the TCF7L2 association with diabetes.
doi:10.1186/1471-2350-8-S1-S16
PMCID: PMC1995610  PMID: 17903298
6.  Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes 
BMC Medical Genetics  2007;8(Suppl 1):S5.
Background
Cardiovascular disease (CVD) and its most common manifestations – including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) – are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.
Methods
In 1345 Framingham Heart Study participants from the largest 310 pedigrees (54% women, mean age 33 years at entry), we analyzed associations of 70,987 qualifying SNPs (Affymetrix 100K GeneChip) to four major CVD outcomes: major atherosclerotic CVD (n = 142; myocardial infarction, stroke, CHD death), major CHD (n = 118; myocardial infarction, CHD death), AF (n = 151), and HF (n = 73). Participants free of the condition at entry were included in proportional hazards models. We analyzed model-based deviance residuals using generalized estimating equations to test associations between SNP genotypes and traits in additive genetic models restricted to autosomal SNPs with minor allele frequency ≥0.10, genotype call rate ≥0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001.
Results
Six associations yielded p < 10-5. The lowest p-values for each CVD trait were as follows: major CVD, rs499818, p = 6.6 × 10-6; major CHD, rs2549513, p = 9.7 × 10-6; AF, rs958546, p = 4.8 × 10-6; HF: rs740363, p = 8.8 × 10-6. Of note, we found associations of a 13 Kb region on chromosome 9p21 with major CVD (p 1.7 – 1.9 × 10-5) and major CHD (p 2.5 – 3.5 × 10-4) that confirm associations with CHD in two recently reported genome-wide association studies. Also, rs10501920 in CNTN5 was associated with AF (p = 9.4 × 10-6) and HF (p = 1.2 × 10-4). Complete results for these phenotypes can be found at the dbgap website .
Conclusion
No association attained genome-wide significance, but several intriguing findings emerged. Notably, we replicated associations of chromosome 9p21 with major CVD. Additional studies are needed to validate these results. Finding genetic variants associated with CVD may point to novel disease pathways and identify potential targeted preventive therapies.
doi:10.1186/1471-2350-8-S1-S5
PMCID: PMC1995607  PMID: 17903304
7.  Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI's Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S4.
Introduction
Subclinical atherosclerosis (SCA) measures in multiple arterial beds are heritable phenotypes that are associated with increased incidence of cardiovascular disease. We conducted a genome-wide association study (GWAS) for SCA measurements in the community-based Framingham Heart Study.
Methods
Over 100,000 single nucleotide polymorphisms (SNPs) were genotyped (Human 100K GeneChip, Affymetrix) in 1345 subjects from 310 families. We calculated sex-specific age-adjusted and multivariable-adjusted residuals in subjects tested for quantitative SCA phenotypes, including ankle-brachial index, coronary artery calcification and abdominal aortic calcification using multi-detector computed tomography, and carotid intimal medial thickness (IMT) using carotid ultrasonography. We evaluated associations of these phenotypes with 70,987 autosomal SNPs with minor allele frequency ≥ 0.10, call rate ≥ 80%, and Hardy-Weinberg p-value ≥ 0.001 in samples ranging from 673 to 984 subjects, using linear regression with generalized estimating equations (GEE) methodology and family-based association testing (FBAT). Variance components LOD scores were also calculated.
Results
There was no association result meeting criteria for genome-wide significance, but our methods identified 11 SNPs with p < 10-5 by GEE and five SNPs with p < 10-5 by FBAT for multivariable-adjusted phenotypes. Among the associated variants were SNPs in or near genes that may be considered candidates for further study, such as rs1376877 (GEE p < 0.000001, located in ABI2) for maximum internal carotid artery IMT and rs4814615 (FBAT p = 0.000003, located in PCSK2) for maximum common carotid artery IMT. Modest significant associations were noted with various SCA phenotypes for variants in previously reported atherosclerosis candidate genes, including NOS3 and ESR1. Associations were also noted of a region on chromosome 9p21 with CAC phenotypes that confirm associations with coronary heart disease and CAC in two recently reported genome-wide association studies. In linkage analyses, several regions of genome-wide linkage were noted, confirming previously reported linkage of internal carotid artery IMT on chromosome 12. All GEE, FBAT and linkage results are provided as an open-access results resource at .
Conclusion
The results from this GWAS generate hypotheses regarding several SNPs that may be associated with SCA phenotypes in multiple arterial beds. Given the number of tests conducted, subsequent independent replication in a staged approach is essential to identify genetic variants that may be implicated in atherosclerosis.
doi:10.1186/1471-2350-8-S1-S4
PMCID: PMC1995605  PMID: 17903303
8.  Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24: the HD MAPS study 
BMC Medical Genetics  2006;7:71.
Background
Age at onset of Huntington's disease (HD) is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL), modifying age at onset in HD.
Methods
In order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs.
Results
Suggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002) increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001), while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03) and the combined sample (LOD = 1.78, p = 0.002). Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci.
Conclusion
In this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient.
doi:10.1186/1471-2350-7-71
PMCID: PMC1586197  PMID: 16914060

Results 1-8 (8)