PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  No association between polymorphisms in the BDNF gene and age at onset in Huntington disease 
BMC Medical Genetics  2006;7:79.
Background
Recent evidence suggests that brain-derived neurotrophic factor (BDNF) is an attractive candidate for modifying age at onset (AO) in Huntington disease (HD). In particular, the functional Val66Met polymorphism appeared to exert a significant effect. Here we evaluate BDNF variability with respect to AO of HD using markers that represent the entire locus.
Methods
Five selected tagging polymorphisms were genotyped across a 65 kb region comprising the BDNF gene in a well established cohort of 250 unrelated German HD patients.
Results
Addition of BDNF genotype variations or one of the marker haplotypes to the effect of CAG repeat lengths did not affect the variance of the AO.
Conclusion
We were unable to verify a recently reported association between the functional Val66Met polymorphism in the BDNF gene and AO in HD. From our findings, we conclude that neither sequence variations in nor near the gene contribute significantly to the variance of AO.
doi:10.1186/1471-2350-7-79
PMCID: PMC1637098  PMID: 17096834
2.  Age at onset of Huntington disease is not modulated by the R72P variation in TP53 and the R196K variation in the gene coding for the human caspase activated DNase (hCAD) 
BMC Medical Genetics  2005;6:35.
Background
TP53 is an attractive candidate for modifying age of onset (AO) in Huntington disease (HD): The amino-terminus of the mutated huntingtin (htt) exon 1 translation product has functional properties which may affect critically the TP53 pathway in HD neurons. The pathogenic domain of mutant htt interacts with nuclear transcription factors, and it potentially modulates TP53-induced transcriptional events. A single nucleotide polymorphism (SNP) resulting in the R72P exchange in TP53 protein might modulate the variation in AO. In addition, also the R196K replacement in human caspase activated DNase (hCAD) may theoretically affect the AO.
Methods
We have genotyped the polymorphisms R72P and R196K in a well established cohort of 167 unrelated HD patients.
Results
The expanded CAG repeat explained 30.8% of the variance in AO. Adding the genotypes of the SNPs investigated did not affect the variance of the AO variance explained.
Conclusion
In this replication study, no association was found explaining a significant amount of the variability in AO of HD thus contradicting a recent report.
doi:10.1186/1471-2350-6-35
PMCID: PMC1253512  PMID: 16202123
3.  Glutathione S-Transferase Ω 1 variation does not influence age at onset of Huntington's disease 
Background
Huntington's disease (HD) is a fully penetrant, autosomal dominantly inherited disorder associated with abnormal expansions of a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of repeat units is highly predictive for the age at onset (AO) of the disorder. But AO is only modestly correlated with repeat length when intermediate HD expansions are considered. Circumstantial evidence suggests that additional features of the HD course are based on genetic traits. Therefore, it may be possible to investigate the genetic background of HD, i.e. to map the loci underlying the development and progression of the disease. Recently an association of Glutathione S-Transferase Ω 1 (GSTO1) and possibly of GSTO2 with AO was demonstrated for, both, Alzheimer's (AD) and Parkinson's disease (PD).
Methods
We have genotyped the polymorphisms rs4925 GSTO1 and rs2297235 GSTO2 in 232 patients with HD and 228 controls.
Results
After genotyping GSTO1 and GSTO2 polymorphisms, firstly there was no statistically significant difference in AO for HD patients, as well as secondly for HD patients vs. controls concerning, both, genotype and allele frequencies, respectively.
Conclusion
The GSTO1 and GSTO2 genes flanked by the investigated polymorphisms are not comprised in a primary candidate region influencing AO in HD.
doi:10.1186/1471-2350-5-7
PMCID: PMC394327  PMID: 15040808

Results 1-3 (3)