Search tips
Search criteria

Results 1-25 (72)

Clipboard (0)
Year of Publication
Document Types
1.  EPHA4 haploinsufficiency is responsible for the short stature of a patient with 2q35-q36.2 deletion and Waardenburg syndrome 
BMC Medical Genetics  2015;16:23.
Waardenburg syndrome type I (WS1), an auditory-pigmentary genetic disorder, is caused by heterozygous loss-of-function mutations in PAX3. Abnormal physical signs such as dystopia canthorum, patchy hypopigmentation and sensorineural hearing loss are common, but short stature is not associated with WS1.
Case presentation
We reported a 4-year and 6 month-old boy with a rare combination of WS1 and severe short stature (83.5 cm (−5.8SD)). His facial features include dystopia canthorum, mild synophrys, slightly up-slanted palpebral fissure, posteriorly rotated ears, alae nasi hypoplasia and micrognathia. No heterochromia was noticed. He had a normal intelligence quotient and hearing. Insulin-like growth factor-1 (IGF-1) was 52.7 ng/ml, lower than the normal range (55 ~ 452 ng/ml) and the peak growth hormone level was 7.57 ng/ml at 90 minutes after taking moderate levodopa and pyridostigmine bromide. The patient exhibited a good response to human growth hormone (rhGH) replacement therapy, showing a 9.2 cm/year growth rate and an improvement of 1 standard deviation (SD) of height after one year treatment. CMA test of patient’s DNA revealed a 4.46 Mb de novo deletion at 2q35-q36.2 (hg19; chr2:221,234,146-225,697,363).
PAX3 haploinsufficiency is known to cause Waardenburg syndrome. Examining overlapping deletions in patients led to the conclusion that EPHA4 is a novel short stature gene. The finding is supported by the splotch-retarded and epha4 knockout mouse models which both showed growth retardation. We believe this rare condition is caused by the haploinsufficiency of both PAX3 and EPH4 genes. We further reported a growth response to recombinant human growth hormone treatment in this patient.
PMCID: PMC4432946  PMID: 25928000
Chromosomal microarray; 2q35-q36.2; PAX3; Waardenburg syndrome; EPHA4; Short stature
2.  Deletion of REXO1L1 locus in a patient with malabsorption syndrome, growth retardation, and dysmorphic features: a novel recognizable microdeletion syndrome? 
BMC Medical Genetics  2015;16:20.
Copy number variations (CNVs) can contribute to genetic variation among individuals and/or have a significant influence in causing diseases. Many studies consider new CNVs’ effects on protein family evolution giving rise to gene duplicates or losses. “Unsuccessful” duplicates that remain in the genome as pseudogenes often exhibit functional roles. So, changes in gene and pseudogene number may contribute to development or act as susceptibility alleles of diseases.
Case presentation
We report a de novo heterozygous 271 Kb microdeletion at 8q21.2 region which includes the family of REXO1L genes and pseudogenes in a young man affected by global development delay, progeroid signs, and gastrointestinal anomalies. Molecular and cellular analysis showed that the REXO1L1 gene hemizygosity in a patient’s fibroblasts induces genetic instability and increased apoptosis after treatment with different DNA damage-induced agents.
The present results support the hypothesis that low copy gene number within REXO1L1 cluster could play a significant role in this complex clinical and cellular phenotype.
PMCID: PMC4422118  PMID: 25927938
8q21.2 microdeletion; REXO1L1 gene; aCGH; CNV; Facial dysmorphisms; Inflammation and apoptosis of gastrointestinal mucosa
3.  Variation in DNAH1 may contribute to primary ciliary dyskinesia 
BMC Medical Genetics  2015;16:14.
Primary Ciliary Dyskinesia (PCD) is a genetically heterogeneous ciliopathy caused by ultrastructural defects in ciliary or flagellar structure and is characterized by a number of clinical symptoms including recurrent respiratory infections progressing to permanent lung damage and infertility.
Case presentation
Here we describe our search to delineate the molecular basis in two affected sisters with clinically diagnosed PCD from a consanguineous Saudi Arabian family, in which all known genes have been excluded. A homozygosity mapping-based approach was utilized that ultimately identified one single affected-shared region of homozygosity using 10 additional unaffected family members. A plausible candidate gene was directly sequenced and analyzed for mutations. A novel homozygous missense aberration (p.Lys1154Gln) was identified in both sisters in the DNAH1 gene that segregated completely with the disease phenotype. Further confirmation of this interesting variant was provided by exome-wide analysis in the proband.
Molecular variation in DNAH1 may play a role in PCD and its potential contribution should be considered in patients where all known genes are excluded.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-015-0162-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4422061  PMID: 25927852
Primary ciliary dyskinesia; Genome-wide; Axonemal heavy chain; DNAH; Whole exome
4.  Keratinocytic epidermal nevus syndrome with Schwann cell proliferation, lipomatous tumour and mosaic KRAS mutation 
BMC Medical Genetics  2015;16:6.
Keratinocytic epidermal nevus syndrome (KENS) is a complex disorder not only characterized by the presence of epidermal nevi but also by abnormalities in the internal organ systems. A small number of cases with KENS are molecularly characterized and reported in the literature with somatic activating RAS, FGFR3 and PIK3CA mutations.
Case presentation
In this study we present a patient with hyper- and hypopigmented regions, verrucous pigmented skin lesions and a paravertebral conglomerate tumour at the level of the cervical and thoracic spine. A large lipomatous dumbbell tumour caused atrophy of the spinal cord with progressive paraparesis. We identified a mosaic c.35G > A (p.Gly12Asp) KRAS mutation in the pigmented verrucous epidermal nevus tissue, the intraneural schwann cells and the lipoma. The c.35G > A (p.Gly12Asp) KRAS mutation was absent in the peripheral blood leukocytes.
We conclude that KENS, the intraneural Schwann cell proliferation and the lipoma in this individual were caused by a postzygotic and mosaic activating c.35G > A (p.Gly12Asp) KRAS mutation.
PMCID: PMC4422428  PMID: 25928347
Keratinocytic epidermal nevus syndrome; KRAS; Mosaicism; RASopathy; Somatic mutation
5.  Whole exome sequencing in an Indian family links Coats plus syndrome and dextrocardia with a homozygous novel CTC1 and a rare HES7 variation 
BMC Medical Genetics  2015;16:5.
Coats plus syndrome is an autosomal recessive, pleiotropic, multisystem disorder characterized by retinal telangiectasia and exudates, intracranial calcification with leukoencephalopathy and brain cysts, osteopenia with predisposition to fractures, bone marrow suppression, gastrointestinal bleeding and portal hypertension. It is caused by compound heterozygous mutations in the CTC1 gene.
Case presentation
We encountered a case of an eight-year old boy from an Indian family with manifestations of Coats plus syndrome along with an unusual occurrence of dextrocardia and situs inversus. Targeted resequencing of the CTC1 gene as well as whole exome sequencing (WES) were conducted in this family to identify the causal variations. The identified candidate variations were screened in ethnicity matched healthy controls. The effect of CTC1 variation on telomere length was assessed using Southern blot. A novel homozygous missense mutation c.1451A > C (p.H484P) in exon 9 of the CTC1 gene and a rare 3′UTR known dbSNP variation (c.*556 T > C) in HES7 were identified as the plausible candidates associated with this complex phenotype of Coats plus and dextrocardia. This CTC1 variation was absent in the controls and we also observed a reduced telomere length in the affected individual’s DNA, suggesting its likely pathogenic nature. The reported p.H484P mutation is located in the N-terminal 700 amino acid regionthat is important for the binding of CTC1 to ssDNA through its two OB domains. WES data also showed a rare homozygous missense variation in the TEK gene in the affected individual. Both HES7 and TEK are targets of the Notch signaling pathway.
This is the first report of a genetically confirmed case of Coats plus syndrome from India. By means of WES, the genetic variations in this family with unique and rare complex phenotype could be traced effectively. We speculate the important role of Notch signaling in this complex phenotypic presentation of Coats plus syndrome and dextrocardia. The present finding will be useful for genetic diagnosis and carrier detection in the family and for other patients with similar disease manifestations.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-015-0151-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4422476  PMID: 25928698
CTC1; Coats plus syndrome; CRMCC; Whole exome sequencing; Autosomal recessive disease; Dextrocardia; Notch signaling
6.  The rare BRAF VK600-601E mutation as a possible indicator of poor prognosis in rectal carcinoma – a report of a case 
BMC Medical Genetics  2015;16:1.
The BRAF V600E mutation is reportedly associated with inferior survival among colon cancer patients. Here we report a patient with rectal cancer who carried the novel BRAF mutation VK600–601E, which has analogous molecular functions to those of the conventional BRAF mutation V600E, and may have potential as a prognostic marker for colorectal cancer (CRC).
Case presentation
The present 65-year-old male patient was diagnosed with recurrent rectal adenocarcinoma (stage II by AJCC TNM staging 7th edition) 14 months after surgery and was treated with modified FOLFOX6 (fluorouracil, leucovorin, and oxaliplatin), radiation, and FOLFIRI (fluorouracil, leucovorin, and irinotecan). The tumor progressed before further treatment could be initiated, resulting in death after 15 months. This survival period was similar to the median overall survival among patients with metastatic CRC and BRAF mutations who were treated with the FOLFIRI regimen with or without cetuximab.
Thus, the BRAF VK600–601E mutation may lead to an aggressive clinical course in CRC patients suffering from rapid progression and potential resistance to multiple therapeutic modalities.
PMCID: PMC4410594  PMID: 25636897
Rectal cancer; BRAF mutation; BRAF VK600-601E; Chemotherapy; Prognosis
7.  Recessive thrombocytopenia likely due to a homozygous pathogenic variant in the FYB gene: case report 
BMC Medical Genetics  2014;15:135.
Inherited thrombocytopenias (IT) are a heterogeneous group of rare diseases characterized by a reduced number of blood platelets. The frequency of IT is probably underestimated because of diagnostic difficulties and because not all the existing forms have as yet been identified, with some patients remaining without a definitive diagnosis. Exome Sequencing has made possible the identification of almost all variants in the coding regions of protein-coding genes, thereby providing the opportunity to identify the disease causing gene in a number of patients with indefinite diagnoses, specifically in consanguineous families.
Case presentation
Familial thrombocytopenia with small size platelets was present in several members of a highly consanguineous family from Northern Iraq. Genotyping of all affected, their unaffected siblings and parents, followed by exome sequencing revealed a strong candidate loss of function variant in a homozygous state: a frameshift mutation in the FYB gene. The protein encoded by this gene is known to be a cytosolic adaptor molecule expressed by T, natural killer (NK), myeloid cells and platelets, and is involved in platelet activation and controls the expression of interleukin-2. Knock-out mice were reported to show isolated thrombocytopenia.
Inherited thrombocytopenias differ in their presentation, associated features, and molecular etiologies. An accurate diagnosis is needed to provide appropriate management as well as counseling for the individuals and their family members. Exome sequencing may become a first diagnostic tool to identify the molecular basis of undiagnosed familial IT. In this report, the clinical evaluation combined with the power and efficiency of genomic analysis defined the FYB gene as the possible underlying cause of autosomal recessive thrombocytopenia with small platelet size. This is the first report linking pathogenic variants in FYB and thrombocytopenia in humans.
PMCID: PMC4411870  PMID: 25516138
Platelets; Thrombocytopenia; Familial; Recessive; FYB gene; Iraq
8.  Complex phenotype with social communication disorder caused by mosaic supernumerary ring chromosome 19p 
BMC Medical Genetics  2014;15:132.
Deletions or duplications of chromosome 19 are rare and there is no previous report in the literature of a ring chromosome derived from proximal 19p. Copy Number Variants (CNVs) responsible for complex phenotypes with Social Communication Disorder (SCD), may contribute to improve knowledge about the distinction between intellectual deficiency and autism spectrum disorders.
Case presentation
We report the clinical and cytogenetic characterization of a patient (male, 33 years-old, first child of healthy Portuguese non-consanguineous parents) presenting with a complex phenotype including SCD without intellectual deficiency and carrying a mosaic supernumerary ring chromosome 19p. Microarray-Based Comparative Genomic Hybridization and Fluorescence in situ Hybridization were performed. Genetic analysis showed a large mosaic interstitial duplication 19p13.12p12 of the short arm of chromosome 19, spanning 8.35 Mb. Our data suggested a putative association between psychosocial dysfunction and mosaic pure trisomy 19p13.2p12.
This clinical report demonstrated the need to analyze more discreet trait-based subsets of complex phenotypes to improve the ability to detect genetic effects. To address this question and the broader issue of deciphering the yet unknown genetic contributors to complex phenotype with SCD, we suggest performing systematic psychological and psychiatric assessments in patients with chromosomal abnormalities.
PMCID: PMC4411819  PMID: 25496186
Genetics; Autism; Social communication disorder; Duplication; Neurodevelopment; Chromosomal abnormalities; Trisomy; Copy number variants
9.  Cryptic FMR1 mosaic deletion in a phenotypically normal mother of a boy with fragile X syndrome: case report 
BMC Medical Genetics  2014;15:125.
Increasing number of case reports of mosaic mutations and deletions have better armed clinicians and geneticists with more accurate and focused prenatal diagnoses. Since mosaicism means a significant increase of recurrence risk, detailed parental profiling is essential for risk assessments.
Case presentation
We here describe a clinically unaffected mother with a son who had fragile X syndrome (FXS) caused by a large deletion that includes the entire FMR1. To assess the recurrence risk regarding her second pregnancy, a series of genetic tests were conducted to establish this mother’s status. Routine single nucleotide polymorphism (SNP) array and fluorescence in situ hybridisation (FISH) analyses detected two normal FMR1 copies in her blood. However, in-depth studies across the deleted region revealed varying proportions of mosaic deletion in her somatic tissues: lowest in the blood, moderately higher in the skin, urine sediment and menstrual discharge and highest in her eyebrow. Further FISH analysis of her skin-derived fibroblasts confirmed mosaicism of 13%.
To our knowledge, this is the first characterized case of a female who was mosaic for an FMR1 deletion and extensive investigation of her mosaic status provided valuable information for her reproduction choices. Our case report may also alert clinicians and geneticists that a cryptic mosaicism with somatic heterogeneity should be carefully considered in families with children having clinically defined ‘de novo’ mutations, to avoid a second pregnancy with identical genetic abnormalities.
PMCID: PMC4411709  PMID: 25421229
Deletion; Fragile X syndrome; Mosaic; Somatic heterogeneity
10.  Arterial Tortuosity Syndrome: homozygosity for two novel and one recurrent SLC2A10 missense mutations in three families with severe cardiopulmonary complications in infancy and a literature review 
BMC Medical Genetics  2014;15:122.
Arterial Tortuosity Syndrome (ATS) is a very rare autosomal recessive connective tissue disorder (CTD) characterized by tortuosity and elongation of the large- and medium-sized arteries and a propensity for aneurysm formation and vascular dissection. During infancy, children frequently present the involvement of the pulmonary arteries (elongation, tortuosity, stenosis) with dyspnea and cyanosis. Other CTD signs of ATS are dysmorphisms, abdominal hernias, joint hypermobility, skeletal abnormalities, and keratoconus. ATS is typically described as a severe disease with high rate of mortality due to major cardiovascular malformations. ATS is caused by mutations in the SLC2A10 gene, which encodes the facilitative glucose transporter 10 (GLUT10). Approximately 100 ATS patients have been described, and 21 causal mutations have been identified in the SLC2A10 gene.
Case presentation
We describe the clinical findings and molecular characterization of three new ATS families, which provide insight into the clinical phenotype of the disorder; furthermore, we expand the allelic repertoire of SLC2A10 by identifying two novel mutations. We also review the ATS patients characterized by our group and compare their clinical findings with previous data.
Our data confirm that the cardiovascular prognosis in ATS is less severe than previously reported and that the first years of life are the most critical for possible life-threatening events. Molecular diagnosis is mandatory to distinguish ATS from other CTDs and to define targeted clinical follow-up and timely cardiovascular surgical or interventional treatment, when needed.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-014-0122-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4412100  PMID: 25373504
Arterial Tortuosity Syndrome; SLC2A10; Homozygous mutations; Pulmonary artery stenosis
11.  Apparently synonymous substitutions in FGFR2 affect splicing and result in mild Crouzon syndrome 
BMC Medical Genetics  2014;15:95.
Mutations of fibroblast growth factor receptor 2 (FGFR2) account for a higher proportion of genetic cases of craniosynostosis than any other gene, and are associated with a wide spectrum of severity of clinical problems. Many of these mutations are highly recurrent and their associated features well documented. Crouzon syndrome is typically caused by heterozygous missense mutations in the third immunoglobulin domain of FGFR2.
Case presentation
Here we describe two families, each segregating a different, previously unreported FGFR2 mutation of the same nucleotide, c.1083A>G and c.1083A>T, both of which encode an apparently synonymous change at the Pro361 codon. We provide experimental evidence that these mutations affect normal FGFR2 splicing and document the clinical consequences, which include a mild Crouzon syndrome phenotype and reduced penetrance of craniosynostosis.
These observations add to a growing list of FGFR2 mutations that affect splicing and provide important clinical information for genetic counselling of families affected by these specific mutations.
PMCID: PMC4236556  PMID: 25174698
Craniosynostosis; Crouzon syndrome; Expressivity; FGFR2; Penetrance; Splicing; Synonymous substitution
12.  Further delineation of Loeys-Dietz syndrome type 4 in a family with mild vascular involvement and a TGFB2 splicing mutation 
BMC Medical Genetics  2014;15:91.
The Loeys-Dietz syndrome (LDS) is a rare autosomal dominant disorder characterized by thoracic aortic aneurysm and dissection and widespread systemic connective tissue involvement. LDS type 1 to 4 are caused by mutations in genes of the TGF-β signaling pathway: TGFBR1 and TGFBR2 encoding the TGF-β receptor (LDS1 and LDS2), SMAD3 encoding the TGF-β receptor cytoplasmic effector (LDS3), and TGFB2 encoding the TGF-β2 ligand (LDS4). LDS4 represents the mildest end of the LDS spectrum, since aneurysms are usually observed in fourth decade and the progression of the disease is slower than in the other forms.
Case presentation
We report the clinical and molecular findings of an LDS4 Italian family. Genetic testing included TGFBR1, TGFBR2, SMAD3, and TGFB2 analysis by Sanger sequencing. In order to verify the effect of the identified splice mutation, RT-PCR analysis was performed.
The proband, a 57-year-old woman, showed high palate, hypoplasic uvula, easy bruising, joint hypermobility, chronic pain, scoliosis, multiple relapsing hernias, dural ectasia, and mitral valve prolapse. Magnetic resonance angiography revealed tortuosity and ectasia of carotid, vertebral, cerebral, and segmental pulmonary arteries. Arterial aneurysm and dissection never occurred. Her 39- and 34-year-old daughters presented with a variable degree of musculoskeletal involvement. Molecular analysis disclosed the novel c.839-1G>A splice site mutation in the TGFB2 gene. This mutation activates a cryptic splice acceptor site in exon 6 leading to frameshift, premature termination codon and haploinsufficiency (p.Gly280Aspfs*41).
Our data confirm that loss-of-function mutations in TGFB2 gene do not always lead to aggressive vascular phenotypes and that articular and skeletal signs are prevalent, therefore suggesting that LDS4 must be considered in patients with sparse signs of LDS and related disorders also in the absence of vascular events.
PMCID: PMC4236574  PMID: 25163805
Loeys-Dietz syndrome type 4; TGFB2; TGF-ß2; Splicing mutation
13.  A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2 
BMC Medical Genetics  2014;15:88.
Wolfram Syndrome type 2 (WFS2) is considered a phenotypic and genotypic variant of WFS, whose minimal criteria for diagnosis are diabetes mellitus and optic atrophy. The disease gene for WFS2 is CISD2. The clinical phenotype of WFS2 differs from WFS1 for the absence of diabetes insipidus and psychiatric disorders, and for the presence of bleeding upper intestinal ulcers and defective platelet aggregation. After the first report of consanguineous Jordanian patients, no further cases of WFS2 have been reported worldwide. We describe the first Caucasian patient affected by WFS2.
Case presentation
The proband was a 17 year-old girl. She presented diabetes mellitus, optic neuropathy, intestinal ulcers, sensorineural hearing loss, and defective platelet aggregation to ADP. Genetic testing showed a novel homozygous intragenic deletion of CISD2 in the proband. Her brother and parents carried the heterozygous mutation and were apparently healthy, although they showed subclinical defective platelet aggregation. Long runs of homozygosity analysis from SNP-array data did not show any degree of parental relationship, but the microsatellite analysis confirmed the hypothesis of a common ancestor.
Our patient does not show optic atrophy, one of the main diagnostic criteria for WFS, but optic neuropathy. Since the “asymptomatic” optic atrophy described in Jordanian patients is not completely supported, we could suppose that the ocular pathology in Jordanian patients was probably optic neuropathy and not optic atrophy. Therefore, as optic atrophy is required as main diagnostic criteria of WFS, it might be that the so-called WFS2 could not be a subtype of WFS. In addition, we found an impaired aggregation to ADP and not to collagen as previously reported, thus it is possible that different experimental conditions or inter-patient variability can explain different results in platelet aggregation. Further clinical reports are necessary to better define the clinical spectrum of this syndrome and to re-evaluate its classification.
PMCID: PMC4121299  PMID: 25056293
CISD2; Optic neuropathy; Non-autoimmune diabetes mellitus; Novel mutation; Platelet aggregation; Sensorineural hearing loss; SNP-array; Upper intestinal ulcers; Wolfram syndrome
14.  Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region 
BMC Medical Genetics  2014;15:87.
SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients.
Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype.
Case presentation
All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7).
Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region.
PMCID: PMC4112833  PMID: 25056248
Madelung deformity; MLPA; SHOX; Short stature
15.  Whole exome sequencing identifies a novel EMD mutation in a Chinese family with dilated cardiomyopathy 
BMC Medical Genetics  2014;15:77.
Variants in the emerin gene (EMD) were implicated in X-linked recessive Emery-Dreifuss muscular dystrophy (EDMD), characterized by early-onset contractures of tendons, progressive muscular weakness and cardiomyopathy. To date, 223 mutations have been reported in EMD gene and the majority of them caused a predominant skeletal muscular phenotype. In this study, we identified a novel deletion mutation in EMD exon 1, which results in almost a complete loss of emerin protein in a large Chinese family. However, the patients suffered severe dilated cardiomyopathy (DCM) but very mild skeletal muscle disorder.
Case presentation
Whole exome sequencing (WES) and linkage analysis were performed to identify the underlying mutation in a Chinese DCM family spanning five generations. A missense variation in the GPR50 gene was found co-segregated with the disease phenotype, whereas no functional alteration was detected in the variant GPR50 protein. When analyzing the failure sequences in the exome sequencing data, a novel deletion mutation (c.26_39delATACCGAGCTGACC) in EMD exon 1, was identified in this family. Different from the typical clinical features caused by most reported EMD mutations, patients in our study presented very mild skeletal muscle degeneration that had not been diagnosed until the mutation was found.
We described a family with rare clinical presentations caused by a novel EMD deletion mutation. Our findings broaden the heterogeneous spectrum of phenotypes attributed to EMD mutations and provide new insight to explain the genotype-phenotype correlations between EMD mutations and EDMD symptoms.
PMCID: PMC4105140  PMID: 24997722
Dilated cardiomyopathy; Emery-Dreifuss muscular dystrophy; EMD gene; Novel mutation; Whole exome sequencing
16.  The effect of homozygous deletion of the BBOX1 and Fibin genes on carnitine level and acyl carnitine profile 
BMC Medical Genetics  2014;15:75.
Carnitine is a key molecule in energy metabolism that helps transport activated fatty acids into the mitochondria. Its homeostasis is achieved through oral intake, renal reabsorption and de novo biosynthesis. Unlike dietary intake and renal reabsorption, the importance of de novo biosynthesis pathway in carnitine homeostasis remains unclear, due to lack of animal models and description of a single patient defective in this pathway.
Case presentation
We identified by array comparative genomic hybridization a 42 months-old girl homozygote for a 221 Kb interstitial deletions at 11p14.2, that overlaps the genes encoding Fibin and butyrobetaine-gamma 2-oxoglutarate dioxygenase 1 (BBOX1), an enzyme essential for the biosynthesis of carnitine de novo. She presented microcephaly, speech delay, growth retardation and minor facial anomalies. The levels of almost all evaluated metabolites were normal. Her serum level of free carnitine was at the lower limit of the reference range, while her acylcarnitine to free carnitine ratio was normal.
We present an individual with a completely defective carnitine de novo biosynthesis. This condition results in mildly decreased free carnitine level, but not in clinical manifestations characteristic of carnitine deficiency disorders, suggesting that dietary carnitine intake and renal reabsorption are sufficient to carnitine homeostasis. Our results also demonstrate that haploinsufficiency of BBOX1 and/or Fibin is not associated with Primrose syndrome as previously suggested.
PMCID: PMC4184381  PMID: 24986124
Carnitine; BBOX1; Fibin; CNV; Primrose syndrome
17.  Terminal chromosome 4q deletion syndrome in an infant with hearing impairment and moderate syndromic features: review of literature 
BMC Medical Genetics  2014;15:72.
Terminal deletions of chromosome 4q are associated with a broad spectrum of phenotypes including cardiac, craniofacial, digital, and cognitive impairment. The rarity of this syndrome renders genotype-phenotype correlation difficult, which is further complicated by the widely different phenotypes observed in patients sharing similar deletion intervals.
Case presentation
Herein, we describe a boy with congenital hearing impairment and a variety of moderate syndromic features that prompted SNP array analysis disclosing a heterozygous 6.9 Mb deletion in the 4q35.1q35.2 region, which emerged de novo in the maternal germ line.
In addition to the index patient, we review 35 cases from the literature and DECIPHER database to attempt genotype-phenotype correlations for a syndrome with great phenotypic variability. We delineate intervals with recurrent phenotypic overlap, particularly for cleft palate, congenital heart defect, intellectual disability, and autism spectrum disorder. Broad phenotypic presentation of the terminal 4q deletion syndrome is consistent with incomplete penetrance of the individual symptoms.
PMCID: PMC4077152  PMID: 24962056
Genotype-phenotype association; Copy number variation; Parent-of-origin; SNP array; Terminal 4q deletion syndrome
18.  A mutation in the H/ACA box of telomerase RNA component gene (TERC) in a young patient with myelodysplastic syndrome 
BMC Medical Genetics  2014;15:68.
Telomeres are repeated sequences (the hexanucleotide TTAGGG in vertebrates) located at chromosome ends of eukaryotes, protecting DNA from end joining or degradation. Telomeres become shorter with each cell cycle, but telomerase, a ribonucleoprotein complex, alleviates this attrition. The telomerase RNA component (TERC) is an essential element of telomerase, serving as a template for telomere elongation. The H/ACA domain of TERC is indispensable for telomere biogenesis. Mutations in the telomerase components allow accelerated telomere loss, resulting in various disease manifestations, including bone marrow failure. To date, this is the first detailed report of an H-box mutation in TERC that is related to human disease.
Case presentation
A 26-year-old man with myelodysplastic syndrome (MDS) had very short telomeres. Sequencing identified a single heterozygous mutation in the H box of the patient’s TERC gene. The same mutation was also present in his father and his son, demonstrating that it was germline in origin. The telomere length in the father’s blood was shorter compared to age-matched healthy controls, while it was normal in the son and also in the sperm cells of the patient. In vitro experiments suggested that the mutation was responsible for the telomere shortening in the patient’s leukocytes and contributed to the pathogenesis of bone marrow failure in our patient.
We analyzed a mutation (A377G) in the H box of TERC in a young MDS patient who had significantly short-for-age telomeres. As telomeres protect chromosomes from instability, it is highly plausible that this genetic lesion was responsible for the patient’s hematological manifestations, including marrow failure and aneuploidy in the hematopoietic stem cell compartment.
PMCID: PMC4073180  PMID: 24948335
Myelodysplastic syndrome (MDS); Telomerase RNA component (TERC); H/ACA box; Southern blotting; Single Telomere Elongation Length Analysis (STELA); RNA fluorescence in situ hybridization (RNA FISH)
19.  Structural variation and missense mutation in SBDS associated with Shwachman-Diamond syndrome 
BMC Medical Genetics  2014;15:64.
Shwachman–Diamond syndrome (SDS) is an autosomal recessive ribosomopathy caused mainly by compound heterozygous mutations in SBDS. Structural variation (SV) involving the SBDS locus has been rarely reported in association with the disease. We aimed to determine whether an SV contributed to the pathogenesis of a case lacking biallelic SBDS point mutations.
Case presentation
Whole exome sequencing was performed in a patient with SDS lacking biallelic SBDS point mutations. Array comparative genomic hybridization and Southern blotting were used to seek SVs across the SBDS locus. Locus-specific polymerase chain reaction (PCR) encompassing flanking intronic sequence was also performed to investigate mutation within the locus. RNA expression and Western blotting were performed to analyze allele and protein expression. We found the child harbored a single missense mutation in SBDS (c.98A > C; p.K33T), inherited from the mother, and an SV in the SBDS locus, inherited from the father. The missense allele and SV segregated in accordance with Mendelian expectations for autosomal recessive SDS. Complementary DNA and western blotting analysis and locus specific PCR support the contention that the SV perturbed SBDS protein expression in the father and child.
Our findings implicate genomic rearrangements in the pathogenesis of some cases of SDS and support patients lacking biallelic SBDS point mutations be tested for SV within the SBDS locus.
PMCID: PMC4057820  PMID: 24898207
Shwachman-Diamond syndrome; SBDS; Structural variation; Genomic rearrangement; Non-allelic homologous recombination; Low copy repeat; Whole exome sequencing; Copy number variation; Recessive disease
20.  De novo deletion of chromosome 11q12.3 in monozygotic twins affected by Poland Syndrome 
BMC Medical Genetics  2014;15:63.
Poland Syndrome (PS) is a rare disorder characterized by hypoplasia/aplasia of the pectoralis major muscle, variably associated with thoracic and upper limb anomalies. Familial recurrence has been reported indicating that PS could have a genetic basis, though the genetic mechanisms underlying PS development are still unknown.
Case presentation
Here we describe a couple of monozygotic (MZ) twin girls, both presenting with Poland Syndrome. They carry a de novo heterozygous 126 Kbp deletion at chromosome 11q12.3 involving 5 genes, four of which, namely HRASLS5, RARRES3, HRASLS2, and PLA2G16, encode proteins that regulate cellular growth, differentiation, and apoptosis, mainly through Ras-mediated signaling pathways.
Phenotype concordance between the monozygotic twin probands provides evidence supporting the genetic control of PS. As genes controlling cell growth and differentiation may be related to morphological defects originating during development, we postulate that the observed chromosome deletion could be causative of the phenotype observed in the twin girls and the deleted genes could play a role in PS development.
PMCID: PMC4051386  PMID: 24885342
Chromosome 11q deletion; Congenital abnormalities; Monozygotic twins; Poland syndrome; CNV; HRASLS5; HRASLS2; RARRES3; PLA2G16
21.  A large de novo 9p21.3 deletion in a girl affected by astrocytoma and multiple melanoma 
BMC Medical Genetics  2014;15:59.
Association of melanoma, neural system tumors and germ line mutations at the 9p21 region in the CDKN2A, CDKN2B and CDKN2BAS genes has been reported in a small number of families worldwide and described as a discrete syndrome in melanoma families registered as a rare disease, the melanoma–astrocytoma syndrome.
Case presentation
We here studied two young patients developing melanoma after radiotherapy for astrocytoma, both reporting lack of family history for melanoma or neural system tumors at genetic counselling. Patient A is a girl treated for anaplastic astrocytoma at 10 years and for multiple melanomas on the scalp associated to dysplastic nevi two years later. Her monozygotic twin sister carried dysplastic nevi and a slow growing, untreated cerebral lesion. Direct sequencing analysis showed no alterations in melanoma susceptibility genes including CDKN2A, CDK4, MC1R and MITF or in TP53. By microsatellite analysis, multiplex ligation-dependent probe amplification, and array comparative genomic hybridization a deletion including the CDKN2A, CDKN2B and CDKN2BAS gene cluster was detected in both twin sisters, encompassing a large region at 9p21.3 and occurring de novo after the loss of one paternal allele.
Patient B is a boy of 7 years when treated for astrocytoma then developing melanoma associated to congenital nevi on the head 10 years later: sequencing and multiplex ligation-dependent probe amplification revealed a normal profile of the CDKN2A/CDKN2B/CDKN2BAS region. Array comparative genomic hybridization confirmed the absence of deletions at 9p21.3 and failed to reveal known pathogenic copy number variations.
By comparison with the other germ line deletions at the CDKN2A, CDKN2B and CDKN2BAS gene cluster reported in melanoma susceptible families, the deletion detected in the two sisters is peculiar for its de novo origin and for its extension, as it represents the largest constitutive deletion at 9p21.3 region identified so far.
In addition, the two studied cases add to other evidence indicating association of melanoma with exposure to ionizing radiation and with second neoplasm after childhood cancer. Melanoma should be considered in the monitoring of pigmented lesions in young cancer patients.
PMCID: PMC4036080  PMID: 24884915
Melanoma-astrocytoma syndrome; 9p21.3 deletion; CDKN2A; CDKN2BAS; MLPA; Oligo array-CGH
22.  Exome sequencing identifies a novel mutation in PIK3R1 as the cause of SHORT syndrome 
BMC Medical Genetics  2014;15:51.
SHORT syndrome is a rare autosomal dominant condition whose name is the acronym of short stature, hyperextensibility of joints, ocular depression, Rieger anomaly and teething delay (MIM 269880). Additionally, the patients usually present a low birth weight and height, lipodystrophy, delayed bone age, hernias, low body mass index and a progeroid appearance.
Case presentation
In this study, we used whole-exome sequencing approaches in two patients with clinical features of SHORT syndrome. We report the finding of a novel mutation in PIK3R1 (c.1929_1933delTGGCA; p.Asp643Aspfs*8), as well as a recurrent mutation c.1945C > T (p.Arg649Trp) in this gene.
We found a novel frameshift mutation in PIK3R1 (c.1929_1933delTGGCA; p.Asp643Aspfs*8) which consists of a deletion right before the site of substrate recognition. As a consequence, the protein lacks the position that interacts with the phosphotyrosine residue of the substrate, resulting in the development of SHORT syndrome.
PMCID: PMC4022398  PMID: 24886349
Aging; Diabetes; Insulin; Kinase; Lipodystrophy; Progeria
23.  New case of trichorinophalangeal syndrome-like phenotype with a de novo t(2;8)(p16.1;q23.3) translocation which does not disrupt the TRPS1 gene 
BMC Medical Genetics  2014;15:52.
Trichorhinophalangeal syndrome (TRPS) is a rare autosomal dominant genetic disorder characterised by distinctive craniofacial and skeletal abnormalities. TRPS is generally associated with mutations in the TRPS1 gene at 8q23.3 or microdeletions of the 8q23.3-q24.11 region. However, three deletions affecting the same chromosome region and a familial translocation t(8;13) co-segregating with TRPS, which do not encompass or disrupt the TRPS1 gene, have been reported. A deregulated expression of TRPS1 has been hypothesised as cause of the TRPS phenotype of these patients.
Case presentation
We report the clinical and molecular characterisation of a 57-year-old Caucasian woman carrying the t(2;8)(p16.1;q23.3) de novo balanced translocation. The proband presented with peculiar clinical features (severe craniofacial dysmorphism, alopecia universalis, severe scoliosis, mitral valve prolapse, mild mental impairment and normal growth parameters) that partially overlap with TRPS I. Mutational and array CGH analyses ruled out any genetic defect affecting TRPS1 or genomic alteration at the translocation breakpoint or elsewhere in the genome. Breakpoint mapping excluded disruption of TRPS1, and revealed that the chromosome 8q23.3 breakpoint was located within the IVS10 of the long intergenic non-coding RNA LINC00536, at approximately 300 kb from the TRPS1 5’ end. Conversely, the 2p16.1 breakpoint mapped within a LINE sequence, in a region that lacks transcriptional regulatory elements. As a result of the translocation, nucleotide base pair additions and deletions were detected at both breakpoint junction fragments, and an evolutionarily conserved VISTA enhancer element from 2p16.1 was relocated at approximately 325 kb from the TRPS1 promoter.
We suggest that the disruption of the genomic architecture of cis regulatory elements downstream the TRPS1 5′ region, combined with the translocation of a novel enhancer element nearby TRPS1, might be the pathogenetic mechanism underpinning the proband’s phenotype. The clinical and genetic characterisation of the present subject allowed us to make a genetic diagnosis in the context of a known syndrome, contributing to a better comprehension of the complex transcriptional regulation of TRPS1 and TRPS ethiopathogenesis.
PMCID: PMC4081657  PMID: 24886451
Reciprocal translocation; Conserved enhancer element; TRPS; TRPS1
24.  De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by clinical exome sequencing 
BMC Medical Genetics  2014;15:49.
Wiedemann-Steiner Syndrome (WSS) is characterized by short stature, a variety of dysmorphic facial and skeletal features, characteristic hypertrichosis cubiti (excessive hair on the elbows), mild-to-moderate developmental delay and intellectual disability. [MIM#: 605130]. Here we report two unrelated children for whom clinical exome sequencing of parent-proband trios was performed at UCLA, resulting in a molecular diagnosis of WSS and atypical clinical presentation.
Case presentation
For patient 1, clinical features at 9 years of age included developmental delay, craniofacial abnormalities, and multiple minor anomalies. Patient 2 presented at 1 year of age with developmental delay, microphthalmia, partial 3–4 left hand syndactyly, and craniofacial abnormalities. A de novo missense c.4342T>C variant and a de novo splice site c.4086+G>A variant were identified in the KMT2A gene in patients 1 and 2, respectively.
Based on the clinical and molecular findings, both patients appear to have novel presentations of WSS. As the hallmark hypertrichosis cubiti was not initially appreciated in either case, this syndrome was not suspected during the clinical evaluation. This report expands the phenotypic spectrum of the clinical phenotypes and KMT2A variants associated with WSS.
PMCID: PMC4072606  PMID: 24886118
Wiedemann-Steiner syndrome; Clinical exome sequencing; KMT2A; Intellectual disability; Developmental delay
25.  Exome sequencing helped the fine diagnosis of two siblings afflicted with atypical Timothy syndrome (TS2) 
BMC Medical Genetics  2014;15:48.
Long-QT syndrome (LQTS) causes a prolongation of the QT-interval in the ECG leading to life threatening tachyarrhythmia and ventricular fibrillation. One atypical form of LQTS, Timothy syndrome (TS), is associated with syndactyly, immune deficiency, cognitive and neurological abnormalities as well as distinct cranio-facial abnormalities.
Case presentation
On a family with both children diagnosed with clinical LQTS, we performed whole exome sequencing to comprehensively screen for causative mutations after a targeted candidate gene panel screen for Long-QT syndrome target genes failed to identify any underlying genetic defect. Using exome sequencing, we identified in both affected children, a p.402G > S mutation in exon 8 of the CACNA1C gene, a voltage-dependent Ca2+ channel. The mutation was inherited from their father, a mosaic mutation carrier. Based on this molecular finding and further more careful clinical examination, we refined the diagnosis to be Timothy syndrome (TS2) and thereby were able to present new therapeutic approaches.
Our study highlights the difficulties in accurate diagnosis of patients with rare diseases, especially those with atypical clinical manifestation. Such challenge could be addressed with the help of comprehensive and unbiased mutation screening, such as exome sequencing.
PMCID: PMC4038115  PMID: 24773605
Timothy syndrome; Exome sequencing; Mosaic mutation; LQTS

Results 1-25 (72)