Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Teaching and learning the Hodgkin-Huxley model based on software developed in NEURON’s programming language hoc 
BMC Medical Education  2013;13:70.
We present a software tool called SENB, which allows the geometric and biophysical neuronal properties in a simple computational model of a Hodgkin-Huxley (HH) axon to be changed. The aim of this work is to develop a didactic and easy-to-use computational tool in the NEURON simulation environment, which allows graphical visualization of both the passive and active conduction parameters and the geometric characteristics of a cylindrical axon with HH properties.
The SENB software offers several advantages for teaching and learning electrophysiology. First, SENB offers ease and flexibility in determining the number of stimuli. Second, SENB allows immediate and simultaneous visualization, in the same window and time frame, of the evolution of the electrophysiological variables. Third, SENB calculates parameters such as time and space constants, stimuli frequency, cellular area and volume, sodium and potassium equilibrium potentials, and propagation velocity of the action potentials. Furthermore, it allows the user to see all this information immediately in the main window. Finally, with just one click SENB can save an image of the main window as evidence.
The SENB software is didactic and versatile, and can be used to improve and facilitate the teaching and learning of the underlying mechanisms in the electrical activity of an axon using the biophysical properties of the squid giant axon.
PMCID: PMC3685589  PMID: 23675833
2.  eMedOffice: A web-based collaborative serious game for teaching optimal design of a medical practice 
BMC Medical Education  2012;12:104.
Preparing medical students for the takeover or the start-up of a medical practice is an important challenge in Germany today. Therefore, this paper presents a computer-aided serious game (eMedOffice) developed and currently in use at the RWTH Aachen University Medical School. The game is part of the attempt to teach medical students the organizational and conceptual basics of the medical practice of a general practitioner in a problem-based learning environment. This paper introduces methods and concepts used to develop the serious game and describes the results of an evaluation of the game's application in curricular courses at the Medical School.
Results of the conducted evaluation gave evidence of a positive learning effect of the serious game. Educational supervisors observed strong collaboration among the players inspired by the competitive gaming aspects. In addition, an increase in willingness to learn and the exploration of new self-invented ideas were observed and valuable proposals for further prospective enhancements were elicited. A statistical analysis of the results of an evaluation provided a clear indication of the positive learning effect of the game. A usability questionnaire survey revealed a very good overall score of 4.07 (5=best, 1=worst).
We consider web-based, collaborative serious games to be a promising means of improving medical education. The insights gained by the implementation of eMedOffice will promote the future development of more effective serious games for integration into curricular courses of the RWTH Aachen University Medical School.
PMCID: PMC3506465  PMID: 23110606
Computer-Assisted Instruction/methods; Games, Experimental; Teaching/methods, Education, Medical; Undergraduate/methods; User-Computer Interface
3.  Educational application for visualization and analysis of electric field strength in multiple electrode electroporation 
BMC Medical Education  2012;12:102.
Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters. In the treatment planning stage, if oversimplified approximations for evaluation of electric field are used, such as U/d (voltage-to-distance ratio), sufficient field strength may not be reached within the entire target (tumor) area, potentially resulting in treatment failure.
In order to provide an aid in education of medical personnel performing electrochemotherapy and non-thermal irreversible electroporation for tissue ablation, assist in visualizing the electric field in needle electrode electroporation and the effects of changes in electrode placement, an application has been developed both as a desktop- and a web-based solution. It enables users to position up to twelve electrodes in a plane of adjustable dimensions representing a two-dimensional slice of tissue. By means of manipulation of electrode placement, i.e. repositioning, and the changes in electrical parameters, the users interact with the system and observe the resulting electrical field strength established by the inserted electrodes in real time. The field strength is calculated and visualized online and instantaneously reflects the desired changes, dramatically improving the user friendliness and educational value, especially compared to approaches utilizing general-purpose numerical modeling software, such as finite element modeling packages.
In this paper we outline the need and offer a solution in medical education in the field of electroporation-based treatments, e.g. primarily electrochemotherapy and non-thermal irreversible tissue ablation. We present the background, the means of implementation and the fully functional application, which is the first of its kind. While the initial feedback from students that have evaluated this application as part of an e-learning course is positive, a formal study is planned to thoroughly evaluate the current version and identify possible future improvements and modifications.
PMCID: PMC3528424  PMID: 23107609
Education on electroporation; Electromagnetic field visualization; Applications in subject areas; Interdisciplinary projects; Interactive learning environments
4.  Integrating personalized medical test contents with XML and XSL-FO 
In 2004 the adoption of a modular curriculum at the medical faculty in Muenster led to the introduction of centralized examinations based on multiple-choice questions (MCQs). We report on how organizational challenges of realizing faculty-wide personalized tests were addressed by implementation of a specialized software module to automatically generate test sheets from individual test registrations and MCQ contents.
Key steps of the presented method for preparing personalized test sheets are (1) the compilation of relevant item contents and graphical media from a relational database with database queries, (2) the creation of Extensible Markup Language (XML) intermediates, and (3) the transformation into paginated documents.
The software module by use of an open source print formatter consistently produced high-quality test sheets, while the blending of vectorized textual contents and pixel graphics resulted in efficient output file sizes. Concomitantly the module permitted an individual randomization of item sequences to prevent illicit collusion.
The automatic generation of personalized MCQ test sheets is feasible using freely available open source software libraries, and can be efficiently deployed on a faculty-wide scale.
PMCID: PMC3056837  PMID: 21362187
5.  Enhanced virtual microscopy for collaborative education 
Curricular reform efforts and a desire to use novel educational strategies that foster student collaboration are challenging the traditional microscope-based teaching of histology. Computer-based histology teaching tools and Virtual Microscopes (VM), computer-based digital slide viewers, have been shown to be effective and efficient educational strategies. We developed an open-source VM system based on the Google Maps engine to transform our histology education and introduce new teaching methods. This VM allows students and faculty to collaboratively create content, annotate slides with markers, and it is enhanced with social networking features to give the community of learners more control over the system.
We currently have 1,037 slides in our VM system comprised of 39,386,941 individual JPEG files that take up 349 gigabytes of server storage space. Of those slides 682 are for general teaching and available to our students and the public; the remaining 355 slides are used for practical exams and have restricted access. The system has seen extensive use with 289,352 unique slide views to date. Students viewed an average of 56.3 slides per month during the histology course and accessed the system at all hours of the day. Of the 621 annotations added to 126 slides 26.2% were added by faculty and 73.8% by students. The use of the VM system reduced the amount of time faculty spent administering the course by 210 hours, but did not reduce the number of laboratory sessions or the number of required faculty. Laboratory sessions were reduced from three hours to two hours each due to the efficiencies in the workflow of the VM system.
Our virtual microscope system has been an effective solution to the challenges facing traditional histopathology laboratories and the novel needs of our revised curriculum. The web-based system allowed us to empower learners to have greater control over their content, as well as the ability to work together in collaborative groups. The VM system saved faculty time and there was no significant difference in student performance on an identical practical exam before and after its adoption. We have made the source code of our VM freely available and encourage use of the publically available slides on our website.
PMCID: PMC3037351  PMID: 21269474
6.  Hunter disease eClinic: interactive, computer-assisted, problem-based approach to independent learning about a rare genetic disease 
BMC Medical Education  2010;10:72.
Computer-based teaching (CBT) is a well-known educational device, but it has never been applied systematically to the teaching of a complex, rare, genetic disease, such as Hunter disease (MPS II).
To develop interactive teaching software functioning as a virtual clinic for the management of MPS II.
Implementation and Results
The Hunter disease eClinic, a self-training, user-friendly educational software program, available at the Lysosomal Storage Research Group (, was developed using the Adobe Flash multimedia platform. It was designed to function both to provide a realistic, interactive virtual clinic and instantaneous access to supporting literature on Hunter disease. The Hunter disease eClinic consists of an eBook and an eClinic. The eClinic is the interactive virtual clinic component of the software. Within an environment resembling a real clinic, the trainee is instructed to perform a medical history, to examine the patient, and to order appropriate investigation. The program provides clinical data derived from the management of actual patients with Hunter disease. The eBook provides instantaneous, electronic access to a vast collection of reference information to provide detailed background clinical and basic science, including relevant biochemistry, physiology, and genetics. In the eClinic, the trainee is presented with quizzes designed to provide immediate feedback on both trainee effectiveness and efficiency. User feedback on the merits of the program was collected at several seminars and formal clinical rounds at several medical centres, primarily in Canada. In addition, online usage statistics were documented for a 2-year period. Feedback was consistently positive and confirmed the practical benefit of the program. The online English-language version is accessed daily by users from all over the world; a Japanese translation of the program is also available.
The Hunter disease eClinic employs a CBT model providing the trainee with realistic clinical problems, coupled with comprehensive basic and clinical reference information by instantaneous access to an electronic textbook, the eBook. The program was rated highly by attendees at national and international presentations. It provides a potential model for use as an educational approach to other rare genetic diseases.
PMCID: PMC2987933  PMID: 20973983
7.  WriteSim TCExam - An open source text simulation environment for training novice researchers in scientific writing 
BMC Medical Education  2010;10:39.
The ability to write clearly and effectively is of central importance to the scientific enterprise. Encouraged by the success of simulation environments in other biomedical sciences, we developed WriteSim TCExam, an open-source, Web-based, textual simulation environment for teaching effective writing techniques to novice researchers. We shortlisted and modified an existing open source application - TCExam to serve as a textual simulation environment. After testing usability internally in our team, we conducted formal field usability studies with novice researchers. These were followed by formal surveys with researchers fitting the role of administrators and users (novice researchers)
The development process was guided by feedback from usability tests within our research team. Online surveys and formal studies, involving members of the Research on Research group and selected novice researchers, show that the application is user-friendly. Additionally it has been used to train 25 novice researchers in scientific writing to date and has generated encouraging results.
WriteSim TCExam is the first Web-based, open-source textual simulation environment designed to complement traditional scientific writing instruction. While initial reviews by students and educators have been positive, a formal study is needed to measure its benefits in comparison to standard instructional methods.
PMCID: PMC2893514  PMID: 20509946
8.  Development, implementation and pilot evaluation of a Web-based Virtual Patient Case Simulation environment – Web-SP 
The Web-based Simulation of Patients (Web-SP) project was initiated in order to facilitate the use of realistic and interactive virtual patients (VP) in medicine and healthcare education. Web-SP focuses on moving beyond the technology savvy teachers, when integrating simulation-based education into health sciences curricula, by making the creation and use of virtual patients easier. The project strives to provide a common generic platform for design/creation, management, evaluation and sharing of web-based virtual patients. The aim of this study was to evaluate if it was possible to develop a web-based virtual patient case simulation environment where the entire case authoring process might be handled by teachers and which would be flexible enough to be used in different healthcare disciplines.
The Web-SP system was constructed to support easy authoring, management and presentation of virtual patient cases. The case authoring environment was found to facilitate for teachers to create full-fledged patient cases without the assistance of computer specialists. Web-SP was successfully implemented at several universities by taking into account key factors such as cost, access, security, scalability and flexibility. Pilot evaluations in medical, dentistry and pharmacy courses shows that students regarded Web-SP as easy to use, engaging and to be of educational value. Cases adapted for all three disciplines were judged to be of significant educational value by the course leaders.
The Web-SP system seems to fulfil the aim of providing a common generic platform for creation, management and evaluation of web-based virtual patient cases. The responses regarding the authoring environment indicated that the system might be user-friendly enough to appeal to a majority of the academic staff. In terms of implementation strengths, Web-SP seems to fulfil most needs from course directors and teachers from various educational institutions and disciplines. The system is currently in use or under implementation in several healthcare disciplines at more than ten universities worldwide. Future aims include structuring the exchange of cases between teachers and academic institutions by building a VP library function. We intend to follow up the positive results presented in this paper with other studies looking at the learning outcomes, critical thinking and patient management. Studying the potential of Web-SP as an assessment tool will also be performed.
More information about Web-SP:
PMCID: PMC1397827  PMID: 16504041

Results 1-8 (8)