PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide 
BMC Infectious Diseases  2011;11:200.
Background
Hydrogen peroxide (H2O2) produced by vaginal lactobacilli is generally believed to protect against bacteria associated with bacterial vaginosis (BV), and strains of lactobacilli that can produce H2O2 are being developed as vaginal probiotics. However, evidence that led to this belief was based in part on non-physiological conditions, antioxidant-free aerobic conditions selected to maximize both production and microbicidal activity of H2O2. Here we used conditions more like those in vivo to compare the effects of physiologically plausible concentrations of H2O2 and lactic acid on a broad range of BV-associated bacteria and vaginal lactobacilli.
Methods
Anaerobic cultures of seventeen species of BV-associated bacteria and four species of vaginal lactobacilli were exposed to H2O2, lactic acid, or acetic acid at pH 7.0 and pH 4.5. After two hours, the remaining viable bacteria were enumerated by growth on agar media plates. The effect of vaginal fluid (VF) on the microbicidal activities of H2O2 and lactic acid was also measured.
Results
Physiological concentrations of H2O2 (< 100 μM) failed to inactivate any of the BV-associated bacteria tested, even in the presence of human myeloperoxidase (MPO) that increases the microbicidal activity of H2O2. At 10 mM, H2O2 inactivated all four species of vaginal lactobacilli but only one of seventeen species of BV-associated bacteria. Moreover, the addition of just 1% vaginal fluid (VF) blocked the microbicidal activity of 1 M H2O2. In contrast, lactic acid at physiological concentrations (55-111 mM) and pH (4.5) inactivated all the BV-associated bacteria tested, and had no detectable effect on the vaginal lactobacilli. Also, the addition of 10% VF did not block the microbicidal activity of lactic acid.
Conclusions
Under optimal, anaerobic growth conditions, physiological concentrations of lactic acid inactivated BV-associated bacteria without affecting vaginal lactobacilli, whereas physiological concentrations of H2O2 produced no detectable inactivation of either BV-associated bacteria or vaginal lactobacilli. Moreover, at very high concentrations, H2O2 was more toxic to vaginal lactobacilli than to BV-associated bacteria. On the basis of these in vitro observations, we conclude that lactic acid, not H2O2, is likely to suppress BV-associated bacteria in vivo.
doi:10.1186/1471-2334-11-200
PMCID: PMC3161885  PMID: 21771337
2.  Microbicide excipients can greatly increase susceptibility to genital herpes transmission in the mouse 
BMC Infectious Diseases  2010;10:331.
Background
Several active ingredients proposed as vaginal microbicides have been shown paradoxically to increase susceptibility to infection in mouse genital herpes (HSV-2) vaginal susceptibility models and in clinical trials. In addition, "inactive ingredients" (or excipients) used in topical products to formulate and deliver the active ingredient might also cause epithelial toxicities that increase viral susceptibility. However, excipients have not previously been tested in susceptibility models.
Methods
Excipients commonly used in topical products were formulated in a non-toxic vehicle (the "HEC universal placebo"), or other formulations as specified. Twelve hours after exposure to the excipient or a control treatment, mice were challenged with a vaginal dose of HSV-2, and three days later were assessed for infection by vaginal lavage culture to assess susceptibility.
Results
The following excipients markedly increased susceptibility to HSV-2 after a single exposure: 5% glycerol monolaurate (GML) formulated in K-Y® Warming Jelly, 5% GML as a colloidal suspension in phosphate buffered saline, K-Y Warming Jelly alone, and both of its humectant/solvent ingredients (neat propylene glycol and neat PEG-8). For excipients formulated in the HEC vehicle, 30% glycerin significantly increased susceptibility, and a trend toward increased HSV-2 susceptibility was observed after 10% glycerin, and 0.1% disodium EDTA, but not after 0.0186% disodium EDTA. The following excipients did not increase susceptibility: 10% propylene glycol, 0.18%, methylparaben plus 0.02% propylparaben, and 1% benzyl alcohol.
Conclusions
As reported with other surfactants, the surfactant/emulsifier GML markedly increased susceptibility to HSV-2. Glycerin at 30% significantly increased susceptibility, and, undiluted propylene glycol and PEG-8 greatly increased susceptibility.
doi:10.1186/1471-2334-10-331
PMCID: PMC2996397  PMID: 21087496
3.  Cervicovaginal fluid and semen block the microbicidal activity of hydrogen peroxide produced by vaginal lactobacilli 
BMC Infectious Diseases  2010;10:120.
Background
H2O2 produced by vaginal lactobacilli is believed to protect against infection, and H2O2-producing lactobacilli inactivate pathogens in vitro in protein-free salt solution. However, cervicovaginal fluid (CVF) and semen have significant H2O2-blocking activity.
Methods
We measured the H2O2 concentration of CVF and the H2O2-blocking activity of CVF and semen using fluorescence and in vitro bacterial-exposure experiments.
Results
The mean H2O2 measured in fully aerobic CVF was 23 ± 5 μM; however, 50 μM H2O2 in salt solution showed no in vitro inactivation of HSV-2, Neisseria gonorrhoeae, Hemophilus ducreyii, or any of six BV-associated bacteria. CVF reduced 1 mM added H2O2 to an undetectable level, while semen reduced 10 mM added H2O2 to undetectable. Moreover, the addition of just 1% CVF supernatant abolished in vitro pathogen-inactivation by H2O2-producing lactobacilli.
Conclusions
Given the H2O2-blocking activity of CVF and semen, it is implausible that H2O2-production by vaginal lactobacilli is a significant mechanism of protection in vivo.
doi:10.1186/1471-2334-10-120
PMCID: PMC2887447  PMID: 20482854
4.  Vaginal microbicides: detecting toxicities in vivo that paradoxically increase pathogen transmission 
Background
Microbicides must protect against STD pathogens without causing unacceptable toxic effects. Microbicides based on nonoxynol-9 (N9) and other detergents disrupt sperm, HSV and HIV membranes, and these agents are effective contraceptives. But paradoxically N9 fails to protect women against HIV and other STD pathogens, most likely because it causes toxic effects that increase susceptibility. The mouse HSV-2 vaginal transmission model reported here: (a) Directly tests for toxic effects that increase susceptibility to HSV-2, (b) Determines in vivo whether a microbicide can protect against HSV-2 transmission without causing toxicities that increase susceptibility, and (c) Identifies those toxic effects that best correlate with the increased HSV susceptibility.
Methods
Susceptibility was evaluated in progestin-treated mice by delivering a low-dose viral inoculum (0.1 ID50) at various times after delivering the candidate microbicide to detect whether the candidate increased the fraction of mice infected. Ten agents were tested – five detergents: nonionic (N9), cationic (benzalkonium chloride, BZK), anionic (sodium dodecylsulfate, SDS), the pair of detergents in C31G (C14AO and C16B); one surface active agent (chlorhexidine); two non-detergents (BufferGel®, and sulfonated polystyrene, SPS); and HEC placebo gel (hydroxyethylcellulose). Toxic effects were evaluated by histology, uptake of a 'dead cell' dye, colposcopy, enumeration of vaginal macrophages, and measurement of inflammatory cytokines.
Results
A single dose of N9 protected against HSV-2 for a few minutes but then rapidly increased susceptibility, which reached maximum at 12 hours. When applied at the minimal concentration needed for brief partial protection, all five detergents caused a subsequent increase in susceptibility at 12 hours of ~20–30-fold. Surprisingly, colposcopy failed to detect visible signs of the N9 toxic effect that increased susceptibility at 12 hours. Toxic effects that occurred contemporaneously with increased susceptibility were rapid exfoliation and re-growth of epithelial cell layers, entry of macrophages into the vaginal lumen, and release of one or more inflammatory cytokines (Il-1β, KC, MIP 1α, RANTES). The non-detergent microbicides and HEC placebo caused no significant increase in susceptibility or toxic effects.
Conclusion
This mouse HSV-2 model provides a sensitive method to detect microbicide-induced toxicities that increase susceptibility to infection. In this model, there was no concentration at which detergents provided protection without significantly increasing susceptibility.
doi:10.1186/1471-2334-6-90
PMCID: PMC1523343  PMID: 16740164
5.  Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model 
Background
Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel®) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model.
Methods
Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs.
Results
Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected).
Conclusion
These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV.
doi:10.1186/1471-2334-5-79
PMCID: PMC1262719  PMID: 16194280

Results 1-5 (5)