Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)
Year of Publication
Document Types
1.  Generation of functional HLA-DR*1101 tetramers receptive for loading with pathogen or tumour derived synthetic peptides 
BMC Immunology  2005;6:24.
MHC class I-peptide tetramers are currently utilised to characterize CD8+ T cell responses at single cell level. The generation and use of MHC class II tetramers to study antigen-specific CD4+ T cells appears less straightforward. Most MHC class II tetramers are produced with a homogeneously built-in peptide, reducing greatly their flexibility of use. We attempted the generation of "empty" functional HLA-DR*1101 tetramers, receptive for loading with synthetic peptides by incubation. No such reagent is in fact available for this HLA-DR allele, one of the most frequent in the Caucasian population.
We compared soluble MHC class II-immunoglobulin fusion proteins (HLA-DR*1101-Ig) with soluble MHC class II protein fused with an optimised Bir site for enzymatic biotynilation (HLA-DR*1101-Bir), both produced in insect cells. The molecules were multimerised by binding fluorochrome-protein A or fluorochrome-streptavidin, respectively. We find that HLA-DR*1101-Bir molecules are superior to the HLA-DR*1101-Ig ones both in biochemical and functional terms. HLA-DR*1101-Bir molecules can be pulsed with at least three different promiscuous peptide epitopes, derived from Tetanus Toxoid, influenza HA and the tumour associated antigen MAGE-3 respectively, to stain specific CD4+ T cells. Both staining temperature and activation state of CD4+ T cells are critical for the binding of peptide-pulsed HLA-DR*1101-Bir to the cognate TCR.
It is therefore possible to generate a soluble recombinant HLA-DR*1101 backbone that is receptive for loading with different peptides to stain specific CD4+ T cells. As shown for other HLA-DR alleles, we confirm that not all the strategies to produce soluble HLA-DR*1101 multimers are equivalent.
PMCID: PMC1325046  PMID: 16329759
2.  Follicular dendritic-like cells derived from human monocytes 
BMC Immunology  2005;6:23.
Follicular dendritic cells (FDCs) play a central role in controlling B-cell response maturation, isotype switching and the maintenance of B-cell memory. These functions are based on prolonged preservation of antigen and its presentation in its native form by FDCs. However, when entrapping entire pathogens, FDCs can turn into dangerous long-term reservoirs that may preserve viruses or prions in highly infectious form.
Despite various efforts, the ontogeny of FDCs has remained elusive. They have been proposed to derive either from bone marrow stromal cells, myeloid cells or local mesenchymal precursors. Still, differentiating FDCs from their precursors in vitro may allow addressing many unsolved issues associated with the (patho-) biology of these important antigen-presenting cells. The aim of our study was to demonstrate that FDC-like cells can be deduced from monocytes, and to develop a protocol in order to quantitatively generate them in vitro.
Employing highly purified human monocytes as a starter population, low concentrations of Il-4 (25 U/ml) and GM-CSF (3 U/ml) in combination with Dexamethasone (Dex) (0.5 μM) in serum-free medium trigger the differentiation into FDC-like cells. After transient de-novo membrane expression of alkaline phosphatase (AP), such cells highly up-regulate surface expression of complement receptor I (CD35). Co-expression of CD68 confirms the monocytic origin of both, APpos and CD35pos cells. The common leukocyte antigen CD45 is strongly down-regulated. Successive stimulation with TNF-α up-regulates adhesion molecules ICAM-1 (CD54) and VCAM (CD106). Importantly, both, APpos as well as APneg FDC-like cells, heterotypically cluster with and emperipolese B cells and exhibit the FDC characteristic ability to entrap functionally preserved antigen for prolonged times. Identical characteristics are found in monocytes which were highly expanded in vitro by higher doses of GM-CSF (25 U/ml) in the absence of Dex and Il-4 before employing the above differentiation cocktail.
In this work we provide evidence that FDC-like cells can be derived from monocytes in vitro. Monocyte-derived FDC-like cells quantitatively produced offer a broad utility covering basic research as well as clinical application.
PMCID: PMC1249575  PMID: 16179091
3.  Reciprocal role of cyclins and cyclin kinase inhibitor p21WAF1/CIP1 on lymphocyte proliferation, allo-immune activation and inflammation 
BMC Immunology  2005;6:22.
Immune activation that results due to the aberrant proliferation of lymphocytes leads to inflammation and graft rejection in organ transplant recipients. We hypothesize that the cell cycle control and inflammation are parallel events, inhibition of cellular proliferation by cyclin kinase inhibitor specifically p21 will limit inflammation and prevent allograft rejection.
We performed in vitro and in vivo studies using lymphocytes, and rat heart transplant model to understand the role of cyclins and p21 on mitogen and allo-induced lymphocyte activation and inflammation. Lymphocyte proliferation was studied by 3H-thymidine uptake assay and mRNA expression was studied RT-PCR.
Activation of allo- and mitogen stimulated lymphocytes resulted in increased expression of cyclins, IL-2 and pro-inflammatory cytokines, which was inhibited by cyclosporine. The over-expression of p21 prolonged graft survival in a completely mismatched rat heart transplant model resulted by inhibiting circulating and intra-graft expression of proinflammatory cytokines.
Cyclins play a significant role in transplant-induced immune activation and p21 over-expression has potential to inhibit T cell activation and inflammation. The results from this study will permit the design of alternate strategies by controlling cell cycle progression to achieve immunosuppression in transplantation.
PMCID: PMC1242230  PMID: 16176581
4.  Metallothionein mediates leukocyte chemotaxis 
BMC Immunology  2005;6:21.
Metallothionein (MT) is a cysteine-rich, metal-binding protein that can be induced by a variety of agents. Modulation of MT levels has also been shown to alter specific immune functions. We have noticed that the MT genes map close to the chemokines Ccl17 and Cx3cl1. Cysteine motifs that characterize these chemokines are also found in the MT sequence suggesting that MT might also act as a chemotactic factor.
In the experiments reported here, we show that immune cells migrate chemotactically in the presence of a gradient of MT. This response can be specifically blocked by two different monoclonal anti-MT antibodies. Exposure of cells to MT also leads to a rapid increase in F-actin content. Incubation of Jurkat T cells with cholera toxin or pertussis toxin completely abrogates the chemotactic response to MT. Thus MT may act via G-protein coupled receptors and through the cyclic AMP signaling pathway to initiate chemotaxis.
These results suggest that, under inflammatory conditions, metallothionein in the extracellular environment may support the beneficial movement of leukocytes to the site of inflammation. MT may therefore represent a "danger signal"; modifying the character of the immune response when cells sense cellular stress. Elevated metallothionein produced in the context of exposure to environmental toxicants, or as a result of chronic inflammatory disease, may alter the normal chemotactic responses that regulate leukocyte trafficking. Thus, MT synthesis may represent an important factor in immunomodulation that is associated with autoimmune disease and toxicant exposure.
PMCID: PMC1262721  PMID: 16164753
5.  Quantitative PCR for detection of the OT-1 transgene 
BMC Immunology  2005;6:20.
Transgenic TCR mice are often used experimentally as a source of T cells of a defined specificity. One of the most widely used transgenic TCR models is the OT-1 transgenic mouse in which the CD8+ T cells express a TCR specific for the SIINFEKL peptide of ovalbumin presented on kb. Although OT-1 CD8+ can be used in a variety of different experimental settings, we principally employ adoptive transfer and peptide-driven expansion of OT-1 cells in order to explore the distribution and fate of these antigen-specific OT-1 T cells. We set out to develop a quantitative PCR assay for OT-1 cells in order to assess the distribution of OT-1 CD8+ T cells in tissues that are either intrinsically difficult to dissociate for flow cytometric analysis or rendered incompatible with flow cytometric analysis through freezing or fixation.
We show excellent correlation between flow cytometric assessment of OT-1 cells and OT-1 signal by qPCR assays in cell dilutions as well as in in vivo adoptive transfer experiments. We also demonstrate that qPCR can be performed from archival formalin-fixed paraffin-embedded tissue sections. In addition, the non-quantitative PCR using the OT-1-specific primers without the real-time probe is a valuable tool for OT-1 genotyping, obviating the need for peripheral blood collection and subsequent flow cytometric analysis.
An OT-1 specific qPCR assay has been developed to quantify adoptively transferred OT-1 cells. OT-1 qPCR to determine cell signal is a valuable adjunct to the standard flow cytometric analysis of OT-1 cell number, particularly in experimental settings where tissue disaggregation is not desirable or in tissues which are not readily disassociated
PMCID: PMC1201141  PMID: 16120215
6.  Inhibition of chemokine expression in rat inflamed paws by systemic use of the antihyperalgesic oxidized ATP 
BMC Immunology  2005;6:18.
We previously showed that local use of periodate oxidized ATP (oATP, a selective inhibitor of P2X7 receptors for ATP) in rat paw treated with Freund's adjuvant induced a significant reduction of hyperalgesia Herein we investigate the role of oATP, in the rat paws inflamed by carrageenan, which mimics acute inflammation in humans.
Local, oral or intravenous administration of a single dose of oATP significantly reduced thermal hyperalgesia in hind paws of rats for 24 hours, and such effect was greater than that induced by diclofenac or indomethacin. Following oATP treatment, the expression of the pro-inflammatory chemokines interferon-gamma-inducible protein-10 (IP-10), mon ocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) within the inflamed tissues markedly decreased on vessels and infiltrated cells. In parallel, the immunohistochemical findings showed an impairment, with respect to the untreated rats, in P2X7 expression, mainly on nerves and vessels close to the site of inflammation. Finally, oATP treatment significantly reduced the presence of infiltrating inflammatory macrophages in the paw tissue.
Taken together these results clearly show that oATP reduces carrageenan-induced inflammation in rats.
PMCID: PMC1190175  PMID: 16042776
7.  A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation 
BMC Immunology  2005;6:19.
Exposure to Staphylococcal Enterotoxin B (SEB), a bacterial superantigen secreted by the Gram-positive bacteria Staphyloccocus aureus, results in the expansion and eventual clonal deletion and anergy of Vβ8+ T cells, as well as massive cytokine release, including Interleukin-2 (IL-2). This IL-2 is rapidly secreted following exposure to SEB and may contribute to the symptoms seen following exposure to this bacterial toxin. The Tec family kinase ITK has been shown to be important for the production of IL-2 by T cells stimulated in vitro and may represent a good target for blocking the production of this cytokine in vivo. In order to determine if ITK represents such a target, mice lacking ITK were analyzed for their response to SEB exposure.
It was found that T cells from mice lacking ITK exhibited significantly reduced proliferative responses to SEB exposure in vitro, as well as in vivo. Examination of IL-2 production revealed that ITK null mice produced reduced levels of this cytokine in vitro, and more dramatically, in vivo. In vivo analysis of c-jun phosphorylation, previously shown to be critical for regulating IL-2 production, revealed that this pathway was specifically activated in SEB reactive Vβ8+ (but not non-reactive Vβ6+) T cells from WT mice, but not in Vβ8+ T cells from ITK null mice. However, toxicity analysis indicated that both WT and ITK null animals were similarly affected by SEB exposure.
These data show that ITK is required for IL-2 production induced by SEB in vivo, and may regulate signals leading IL-2 production, in part by regulating phosphorylation of c-jun. The data also suggest that perturbing T cell activation pathways leading to IL-2 does not necessarily lead to improved responses to SEB toxicity.
PMCID: PMC1200558  PMID: 16042784
8.  Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT 
BMC Immunology  2005;6:17.
Cryopreservation of PBMC and/or overnight shipping of samples are required for many clinical trials, despite their potentially adverse effects upon immune monitoring assays such as MHC-peptide tetramer staining, cytokine flow cytometry (CFC), and ELISPOT. In this study, we compared the performance of these assays on leukapheresed PBMC shipped overnight in medium versus cryopreserved PBMC from matched donors.
Using CMV pp65 peptide pool stimulation or pp65 HLA-A2 tetramer staining, there was significant correlation between shipped and cryopreserved samples for each assay (p ≤ 0.001). The differences in response magnitude between cryopreserved and shipped PBMC specimens were not significant for most antigens and assays. There was significant correlation between CFC and ELISPOT assay using pp65 peptide pool stimulation, in both shipped and cryopreserved samples (p ≤ 0.001). Strong correlation was observed between CFC (using HLA-A2-restricted pp65 peptide stimulation) and tetramer staining (p < 0.001). Roughly similar sensitivity and specificity were observed between the three assays and between shipped and cryopreserved samples for each assay.
We conclude that all three assays show concordant results on shipped versus cryopreserved specimens, when using a peptide-based readout. The assays are also concordant with each other in pair wise comparisons using equivalent antigen systems.
PMCID: PMC1190174  PMID: 16026627
9.  Estren promotes androgen phenotypes in primary lymphoid organs and submandibular glands 
BMC Immunology  2005;6:16.
Estrogens and androgens have extensive effects on the immune system, for example they suppress both T and B lymphopoiesis in thymus and bone marrow. Submandibular glands are sexually dimorphic in rodents, resulting in larger granular convoluted tubules in males compared to females. The aim of the present experiments was to investigate the estrogenic and androgenic effects of 4-estren-3α,17β-diol (estren) on thymus, bone marrow and submandibular glands, and compare the effects to those of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT), respectively. Estrogen receptors (ERs) were blocked by treatment of mice with the ER-antagonist ICI 182,780; also, knock-out mice lacking one or both ERs were used.
As expected, the presence of functional ERs was mandatory for all the effects of E2. Similar to DHT-treatment, estren-treatment resulted in decreased thymus weight, as well as decreased frequency of bone marrow B cells. Treatment with estren or DHT also resulted in a shift in submandibular glands towards an androgen phenotype. All the effects of estren and DHT were independent of ERs.
Our study is the first to show that estren has similar effects as the androgen DHT on lymphopoiesis in thymus and bone marrow, and on submandibular glands, and that these effects are independent of estrogen receptors. This supports the hypothesis of estren being able to signal through the androgen receptor.
PMCID: PMC1187889  PMID: 16011795
10.  Cloning and functional characterization of the rabbit C-C chemokine receptor 2 
BMC Immunology  2005;6:15.
CC-family chemokine receptor 2 (CCR2) is implicated in the trafficking of blood-borne monocytes to sites of inflammation and is implicated in the pathogenesis of several inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and atherosclerosis. The major challenge in the development of small molecule chemokine receptor antagonists is the lack of cross-species activity to the receptor in the preclinical species. Rabbit models have been widely used to study the role of various inflammatory molecules in the development of inflammatory processes. Therefore, in this study, we report the cloning and characterization of rabbit CCR2. Data regarding the activity of the CCR2 antagonist will provide valuable tools to perform toxicology and efficacy studies in the rabbit model.
Sequence alignment indicated that rabbit CCR2 shares 80 % identity to human CCR2b. Tissue distribution indicated that rabbit CCR2 is abundantly expressed in spleen and lung. Recombinant rabbit CCR2 expressed as stable transfectants in U-937 cells binds radiolabeled 125I-mouse JE (murine MCP-1) with a calculated Kd of 0.1 nM. In competition binding assays, binding of radiolabeled mouse JE to rabbit CCR2 is differentially competed by human MCP-1, -2, -3 and -4, but not by RANTES, MIP-1α or MIP-1β. U-937/rabbit CCR2 stable transfectants undergo chemotaxis in response to both human MCP-1 and mouse JE with potencies comparable to those reported for human CCR2b. Finally, TAK-779, a dual CCR2/CCR5 antagonist effectively inhibits the binding of 125I-mouse JE (IC50 = 2.3 nM) to rabbit CCR2 and effectively blocks CCR2-mediated chemotaxis.
In this study, we report the cloning of rabbit CCR2 and demonstrate that this receptor is a functional chemotactic receptor for MCP-1.
PMCID: PMC1182369  PMID: 16001983
11.  Elevated ex vivo monocyte chemotactic protein-1 (CCL2) in pulmonary as compared with extra-pulmonary tuberculosis 
BMC Immunology  2005;6:14.
Tuberculosis causes 3 million deaths annually. The most common site of tuberculosis is pulmonary however; extra-pulmonary forms of the disease also remain prevalent. Restriction of Mycobacterium tuberculosis depends on effective recruitment and subsequent activation of T lymphocytes, mononuclear and polymorphonuclear cells to the site of infection. Tumor necrosis factor (TNF)-α is essential for granuloma formation and is a potent activator of monocyte chemotactic protein (MCP-1, CCL2). CCL2 is essential for recruitment of monocytes and T cells and has been shown to play a role in protection against tuberculosis. Interleukin -8 (CXCL8) is a potent activator of neutrophils. Increased levels of CCL2, CXCL8 and TNFα are reported in tuberculosis but their significance in different forms of tuberculosis is as yet unclear. We have used an ex vivo assay to investigate differences in immune parameters in patients with either pulmonary or extra-pulmonary tuberculosis.
Serum levels of CCL2, CXCL8 and TNFα were measured in patients with pulmonary tuberculosis (N = 12), extra-pulmonary tuberculosis (N = 8) and BCG-vaccinated healthy volunteers (N = 12). Whole blood cells were stimulated with non-pathogenic Mycobacterium bovis bacille-Calmette Guerin (BCG) vaccine strain or bacterial lipopolysaccharide (LPS) and cyto/chemokines were monitored in supernatants.
Circulating serum levels of CXCL8 and TNFα were raised in all tuberculosis patients, while CCL2 levels were not. There was no difference in spontaneous cytokine secretion from whole blood cells between patients and controls. M. bovis BCG-induced ex vivo CCL2 secretion was significantly greater in pulmonary as compared with both extra-pulmonary tuberculosis patients and endemic controls. In response to LPS stimulation, patients with pulmonary tuberculosis showed increased CCL2 and TNFα responses as compared with the extra-pulmonary group. BCG-, and LPS-induced CXCL8 secretion was comparable between patients and controls.
CCL2 is activated by TNFα and is essential for recruitment of monocytes and T cells to the site of mycobacterial infection. Increased CCL2 activation in pulmonary tuberculosis may result in a stronger cellular response as compared with extra-pulmonary tuberculosis patients, and this may contribute to the localization of infection to the pulmonary site.
PMCID: PMC1182368  PMID: 16001981
12.  Standardization of cytokine flow cytometry assays 
BMC Immunology  2005;6:13.
Cytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online).
Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results (CD4+cytokine+ cells and CD8+cytokine+ cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template.
Mean inter-laboratory coefficient of variation (C.V.) ranged from 17–44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5–20%, depending upon the experiment. The inter-lab C.V. was lowest (18–24%) for samples with a mean of >0.5% IFNγ + T cells, and highest (57–82%) for samples with a mean of <0.1% IFNγ + cells.
ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays.
PMCID: PMC1184077  PMID: 15978127
13.  The allergy adjuvant effect of particles – genetic factors influence antibody and cytokine responses 
BMC Immunology  2005;6:11.
There is increasing epidemiological and experimental evidence for an aggravating effect of particulate air pollution on asthma and allergic symptoms and, to a lesser extent, on allergic sensitization. Genetic factors appear to influence not only the magnitude, but also the quality of the adjuvant effect of particles with respect to allergen-specific IgE (Th2-associated) and IgG2a (Th1-associated) responses. In the present study, we aimed to investigate how the genetic background influences the responses to the allergen and particles alone and in combination. We examined how polystyrene particles (PSP) affected the IgE and IgG2a responses against the model allergen ovalbumin (OVA), after subcutaneous injection into the footpad of BALB/cA, BALB/cJ, NIH and C3H/HeN mice, Further, ex vivo IL-4, IFN-γ and IL-10 cytokine secretion by Con A-stimulated cells from the draining popliteal lymph node (PLN) five days after injection of OVA and PSP separately or in combination was determined.
PSP injected with OVA increased the levels of OVA-specific IgE antibodies in all strains examined. In contrast, the IgG2a levels were significantly increased only in NIH and C3H/HeN mice. PSP in the presence of OVA increased cell numbers and IL-4, IL-10 and IFN-γ levels in BALB/cA, NIH and C3H/HeN mice, with the exception of IFN-γ in NIH mice. However, each mouse strain had their unique pattern of response to OVA+PSP, OVA and PSP, and also their unique background cytokine response (i.e. the cytokine response in cells from mice injected with buffer only).
Genetic factors (i.e. the strain of mice) influenced the susceptibility to the adjuvant effect of PSP on both secondary antibody responses and primary cellular responses in the lymph node, as well as the cellular responses to both OVA and PSP given separately. Interestingly, PSP alone induced cytokine responses in the lymph node in some of the mouse strains. Furthermore, we found that the ex vivo cytokine patterns did not predict the in vivo Th2- and Th1-associated antibody response patterns in the different mouse strains. The results indicate that insoluble particles act by increasing the inherent response to the allergen, and that the genetic background may determine whether an additional Th1-associated component is added to the response.
PMCID: PMC1182367  PMID: 15967044
14.  Modulation of p53 activity by IκBα: Evidence suggesting a common phylogeny between NF-κB and p53 transcription factors 
BMC Immunology  2005;6:12.
In this work we present evidence that the p53 tumor suppressor protein and NF-κB transcription factors could be related through common descent from a family of ancestral transcription factors regulating cellular proliferation and apoptosis. P53 is a homotetrameric transcription factor known to interact with the ankyrin protein 53BP2 (a fragment of the ASPP2 protein). NF-κB is also regulated by ankyrin proteins, the prototype of which is the IκB family. The DNA binding sequences of the two transcription factors are similar, sharing 8 out of 10 nucleotides. Interactions between the two proteins, both direct and indirect, have been noted previously and the two proteins play central roles in the control of proliferation and apoptosis.
Using previously published structure data, we noted a significant degree of structural alignment between p53 and NF-κB p65. We also determined that IκBα and p53 bind in vitro through a specific interaction in part involving the DNA binding region of p53, or a region proximal to it, and the amino terminus of IκBα independently or cooperatively with the ankyrin 3 domain of IκBα In cotransfection experiments, κBα could significantly inhibit the transcriptional activity of p53. Inhibition of p53-mediated transcription was increased by deletion of the ankyrin 2, 4, or 5 domains of IκBα Co-precipitation experiments using the stably transfected ankyrin 5 deletion mutant of κBα and endogenous wild-type p53 further support the hypothesis that p53 and IκBα can physically interact in vivo.
The aggregate results obtained using bacterially produced IκBα and p53 as well as reticulocyte lysate produced proteins suggest a correlation between in vitro co-precipitation in at least one of the systems and in vivo p53 inhibitory activity. These observations argue for a mechanism involving direct binding of IκBα to p53 in the inhibition of p53 transcriptional activity, analogous to the inhibition of NF-κB by κBα and p53 by 53BP2/ASPP2. These data furthermore suggest a role for ankyrin proteins in the regulation of p53 activity. Taken together, the NFκB and p53 proteins share similarities in structure, DNA binding sites and binding and regulation by ankyrin proteins in support of our hypothesis that the two proteins share common descent from an ancestral transcriptional factor.
PMCID: PMC1184076  PMID: 15969767
15.  Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes 
BMC Immunology  2005;6:10.
Antibody genes are diversified by somatic hypermutation (SHM), gene conversion and class-switch recombination. All three processes are initiated by the activation-induced deaminase (AID). According to a DNA deamination model of SHM, AID converts cytosine to uracil in DNA sequences. The initial deamination of cytosine leads to mutation and recombination in pathways involving replication, DNA mismatch repair and possibly base excision repair. The DNA sequence context of mutation hotspots at G-C pairs during SHM is DGYW/WRCH (G-C is a hotspot position, R = A/G, Y = T/C, W = A/T, D = A/G/T).
To investigate the mechanisms of AID-induced mutagenesis in a model system, we studied the genetic consequences of AID expression in yeast. We constructed a yeast vector with an artificially synthesized human AID gene insert using codons common to highly expressed yeast genes. We found that expression of the artificial hAIDSc gene was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain. A majority of mutations were at G-C pairs. In the ung1 strain, C-G to T-A transitions were found almost exclusively, while a mixture of transitions with 12% transversions was characteristic in the wild-type strain. In the ung1 strain mutations that could have originated from deamination of the transcribed stand were found more frequently. In the wild-type strain, the strand bias was reversed. DGYW/WRCH motifs were preferential sites of mutations.
The results are consistent with the hypothesis that AID-mediated deamination of DNA is a major cause of mutations at G-C base pairs in immunoglobulin genes during SHM. The sequence contexts of mutations in yeast induced by AID and those of somatic mutations at G-C pairs in immunoglobulin genes are significantly similar. This indicates that the intrinsic substrate specificity of AID itself is a primary determinant of mutational hotspots at G-C base pairs during SHM.
PMCID: PMC1180437  PMID: 15949042
16.  BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Id1 
BMC Immunology  2005;6:9.
Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily and are secreted proteins with pleiotropic roles in many different cell types. A potential role of BMP-6 in the immune system has been implied by various studies of malignant and rheumatoid diseases. In the present study, we explored the role of BMP-6 in normal human peripheral blood B cells.
The B cells were found to express BMP type I and type II receptors and BMP-6 rapidly induced phosphorylation of Smad1/5/8. Furthermore, Smad-phosphorylation was followed by upregulation of Id1 mRNA and Id1 protein, whereas Id2 and Id3 expression was not affected. Furthermore, we found that BMP-6 had an antiproliferative effect both in naïve (CD19+CD27-) and memory B cells (CD19+CD27+) stimulated with anti-IgM alone or the combined action of anti-IgM and CD40L. Additionally, BMP-6 induced cell death in activated memory B cells. Importantly, the antiproliferative effect of BMP-6 in B-cells was completely neutralized by the natural antagonist, noggin. Furthermore, B cells were demonstrated to upregulate BMP-6 mRNA upon stimulation with anti-IgM.
In mature human B cells, BMP-6 inhibited cell growth, and rapidly induced phosphorylation of Smad1/5/8 followed by an upregulation of Id1.
PMCID: PMC1134658  PMID: 15877825
17.  Accumulation of marginal zone B cells and accelerated loss of follicular dendritic cells in NF-κB p50-deficient mice 
BMC Immunology  2005;6:8.
Marginal zone (MZ) B cells play important roles in the early phases of humoral immune responses. In addition to possessing an inherent capacity to rapidly differentiate into antibody secreting cells, MZ B cells also help to regulate the fate of both T-independent and T-dependent blood-borne antigens in the spleen. For T-dependent antigens, MZ B cells bind IgM-antigen complexes in a complement-dependent manner. Once MZ B cells bind IgM-containing immune complexes (IgM-IC), they transport them into B cell follicles for deposition onto follicular dendritic cells (FDCs), an important component of secreted IgM's ability to enhance adaptive immune responses. To further define the requirement for MZ B cells in IgM-IC deposition, mice deficient in the NF-κB protein p50, which have been reported to lack MZ B cells, were analyzed for their ability to trap IgM-IC onto FDCs.
Mice (2 months of age) deficient in p50 (p50-/-) had small numbers of MZ B cells, as determined by cell surface phenotype and localization in the splenic MZ. These cells bound high levels of IgM-IC both in vivo and in vitro. Subsequent to the binding of IgM-IC by the MZ B cells in p50-/- mice, small amounts of IgM-IC were found localized on FDCs, suggesting that the MZ B cells retained their ability to transport these complexes into splenic follicles. Strikingly, MZ B cells accumulated with age in p50-/- mice. By 6 months of age, p50-/- mice contained normal numbers of these cells as defined by CD21/CD23 profile and high level expression of CD1d, CD9, and IgM, and by their positioning around the marginal sinus. However, FDCs from these older p50-/- mice exhibited a reduced capacity to trap IgM-IC and retain complement components.
These results demonstrate that while the p50 component of the NF-κB transcription complex plays an important role in the early development of MZ B cells, MZ B cells can develop and accumulate in mice lacking this protein. These results highlight the interface between genetic deficiencies and age, and suggest that different transcription factors may play distinct roles in the development and maintenance of cell populations at different ages.
PMCID: PMC1087843  PMID: 15836790
18.  Analysis of the CCR3 promoter reveals a regulatory region in exon 1 that binds GATA-1 
BMC Immunology  2005;6:7.
CC Chemokine Receptor 3 (CCR3), the major chemokine receptor expressed on eosinophils, binds promiscuously to several ligands including eotaxins 1, 2, and 3. Even though the only cells that consistently accumulate following eotaxin administration in vivo are myeloid cells (primarily eosinophils), other cell types have recently been shown to express CCR3. It is therefore important to elucidate the molecular mechanisms regulating receptor expression.
In order to define regions responsible for CCR3 transcription, a DNAse hypersensitive site was identified in the vicinity of exon 1. Coupled with our previous data implicating exon 1 in CCR3 transcription, we hypothesized that transcription factors bind to exon-1. Electrophoretic mobility shift analysis revealed that nuclear proteins in eosinophilic cells bound to exon 1. Furthermore, antibody interference and mutation studies demonstrated GATA-1 binding to exon 1. In order to test the 1.6-kb CCR3 promoter element (that includes exon 1) for in vivo function, this region was used to generate transgenic mice that expressed a reporter protein. Strong transgene expression was achieved, with the pattern of expression suggesting a broad acting promoter.
The transcription factor GATA-1 binds to CCR3 exon 1. The 1.6-kb CCR3 promoter element, that includes exon 1, is a strong promoter in vivo.
PMCID: PMC1080127  PMID: 15807893
19.  A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-α/β and TNF-α in cultured endothelial cells 
BMC Immunology  2005;6:6.
The recruitment of lymphocytes to secondary lymphoid organs relies on interactions of circulating cells with high endothelial venules (HEV). HEV are exclusive to these organs under physiological conditions, but they can develop in chronically-inflamed tissues. The interaction of L-selectin on lymphocytes with sulfated glycoprotein ligands on HEV results in lymphocyte rolling, which represents the initial step in lymphocyte homing. HEV expression of GlcNAc6ST-2 (also known as HEC-GlcNAc6ST, GST-3, LSST or CHST4), an HEV-restricted sulfotransferase, is essential for the elaboration of L-selectin functional ligands as well as a critical epitope recognized by MECA-79 mAb.
We examined the expression of GlcNAc6ST-2 in relationship to the MECA-79 epitope in rheumatoid arthritis (RA) synovial vessels. Expression of GlcNAc6ST-2 was specific to RA synovial tissues as compared to osteoarthritis synovial tissues and localized to endothelial cells of HEV-like vessels and small flat-walled vessels. Double MECA-79 and GlcNAc6ST-2 staining showed colocalization of the MECA-79 epitope and GlcNAc6ST-2. We further found that both TNF-α and lymphotoxin-αβ induced GlcNAc6ST-2 mRNA and protein in cultured human umbilical vein endothelial cells.
These observations demonstrate that GlcNAc6ST-2 is induced in RA vessels and provide potential cytokine pathways for its induction. GlcNAc6ST-2 is a novel marker of activated vessels within RA ectopic lymphoid aggregates. This enzyme represents a potential therapeutic target for RA.
PMCID: PMC1079838  PMID: 15752429
20.  CyProQuant-PCR: a real time RT-PCR technique for profiling human cytokines, based on external RNA standards, readily automatable for clinical use 
BMC Immunology  2005;6:5.
Real-time PCR is becoming a common tool for detecting and quantifying expression profiling of selected genes. Cytokines mRNA quantification is widely used in immunological research to dissect the early steps of immune responses or pathophysiological pathways. It is also growing to be of clinical relevancy to immuno-monitoring and evaluation of the disease status of patients. The techniques currently used for "absolute quantification" of cytokine mRNA are based on a DNA standard curve and do not take into account the critical impact of RT efficiency.
To overcome this pitfall, we designed a strategy using external RNA as standard in the RT-PCR. Use of synthetic RNA standards, by comparison with the corresponding DNA standard, showed significant variations in the yield of retro-transcription depending the target amplified and the experiment. We then developed primers to be used under one single experimental condition for the specific amplification of human IL-1β, IL-4, IL-10, IL-12p40, IL-13, IL-15, IL-18, IFN-γ, MIF, TGF-β1 and TNF-α mRNA. We showed that the beta-2 microglobulin (β2-MG) gene was suitable for data normalisation since the level of β2-MG transcripts in naïve PBMC varied less than 5 times between individuals and was not affected by LPS or PHA stimulation. The technique, we named CyProQuant-PCR (Cytokine Profiling Quantitative PCR) was validated using a kinetic measurement of cytokine transcripts under in vitro stimulation of human PBMC by lipopolysaccharide (LPS) or Staphylococcus aureus strain Cowan (SAC). Results obtained show that CyProQuant-PCR is powerful enough to precociously detect slight cytokine induction. Finally, having demonstrated the reproducibility of the method, it was applied to malaria patients and asymptomatic controls for the quantification of TGF-β1 transcripts and showed an increased capacity of cells from malaria patients to accumulate TGF-β1 mRNA in response to LPS.
The real-time RT-PCR technique based on a RNA standard curve, CyProQuant-PCR, outlined here, allows for a genuine absolute quantification and a simultaneous analysis of a large panel of human cytokine mRNA. It represents a potent and attractive tool for immunomonitoring, lending itself readily to automation and with a high throughput. This opens the possibility of an easy and reliable cytokine profiling for clinical applications.
PMCID: PMC555737  PMID: 15748278
21.  The mannose receptor is expressed by subsets of APC in non-lymphoid organs 
BMC Immunology  2005;6:4.
The mannose receptor (MR) is an endocytic receptor of Mφ and endothelial cell subsets whose natural ligands include both self glycoproteins and microbial glycans. It is also expressed by immature cultured dendritic cells (DC), where it mediates high efficiency uptake of glycosylated antigens, yet its role in antigen handling in vivo is unknown. Knowledge of which APC subsets express MR will assist the design of experiments to address its immunological functions. Here the expression of MR by MHC class II positive APC in non-lymphoid organs of the mouse is described.
MR positive APC were identified in several peripheral organs: skin, liver, cardiac and skeletal muscle and tongue. MR positive cells in salivary gland, thyroid and pancreas coexpressed MHC class II and the myeloid markers macrosialin and sialoadhesin, but not the dendritic cell markers CD11c or DEC-205. MR and MHC class II colocalised in confocal microscope images, implying that antigen capture may be the primary role of MR in these cells. Distinct ligands of MR were found in salivary gland and pancreas tissue lysates that are candidate physiological ligands of MR positive APC in these organs.
The tissue and subcellular distribution of MR suggest it is appropriately located to serve as a high efficiency antigen uptake receptor of APC.
PMCID: PMC550652  PMID: 15701168
22.  Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination 
BMC Immunology  2005;6:3.
The function of CD57+ CD4+ T cells, constituting a major subset of germinal center T (GC-Th) cells in human lymphoid tissues, has been unclear. There have been contradictory reports regarding the B cell helping function of CD57+ GC-Th cells in production of immunoglobulin (Ig). Furthermore, the cytokine and co-stimulation requirement for their helper activity remains largely unknown. To clarify and gain more insight into their function in helping B cells, we systematically investigated the capacity of human tonsil CD57+ GC-Th cells in inducing B cell Ig synthesis.
We demonstrated that CD57+ GC-Th cells are highly efficient in helping B cell production of all four subsets of Ig (IgM, IgG, IgA and IgE) compared to other T-helper cells located in germinal centers or interfollicular areas. CD57+ GC-Th cells were particularly more efficient than other T cells in helping GC-B cells but not naïve B cells. CD57+ GC-Th cells induced the expression of activation-induced cytosine deaminase (AID) and class switch recombination in developing B cells. IgG1-3 and IgA1 were the major Ig isotypes induced by CD57+ GC-Th cells. CD40L, but not IL-4, IL-10 and IFN-γ, was critical in CD57+ GC-Th cell-driven B cell production of Ig. However, IL-10, when added exogenously, significantly enhanced the helper activity of CD57+ GC-Th cells, while TGF-β1 completely and IFN-γ partially suppressed the CD57+ GC-Th cell-driven Ig production.
CD57+CD4+ T cells in the germinal centers of human lymphoid tissues are the major T helper cell subset for GC-B cells in Ig synthesis. Their helper activity is consistent with their capacity to induce AID and class switch recombination, and can be regulated by CD40L, IL-4, IL-10 and TGF-β.
PMCID: PMC548684  PMID: 15694005
23.  Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome 
BMC Immunology  2005;6:2.
Severe acute respiratory syndrome (SARS) emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from SARS patients, and compared with healthy controls.
The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis.
This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.
PMCID: PMC546205  PMID: 15655079
24.  Fully automated synthesis of (phospho)peptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization 
BMC Immunology  2005;6:1.
Synthetic peptides have played a useful role in studies of protein kinase substrates and interaction domains. Synthetic peptide arrays and libraries, in particular, have accelerated the process. Several factors have hindered or limited the applicability of various techniques, such as the need for deconvolution of combinatorial libraries, the inability or impracticality of achieving full automation using two-dimensional or pin solid phases, the lack of convenient interfacing with standard analytical platforms, or the difficulty of compartmentalization of a planar surface when contact between assay components needs to be avoided. This paper describes a process for synthesis of peptides and phosphopeptides on microtiter plate wells that overcomes previous limitations and demonstrates utility in determination of the epitope of an autophosphorylation site phospho-motif antibody and utility in substrate utilization assays of the protein tyrosine kinase, p60c-src.
The overall reproducibility of phospho-peptide synthesis and multiplexed EGF receptor (EGFR) autophosphorylation site (pY1173) antibody ELISA (9H2) was within 5.5 to 8.0%. Mass spectrometric analyses of the released (phospho)peptides showed homogeneous peaks of the expected molecular weights. An overlapping peptide array of the complete EGFR cytoplasmic sequence revealed a high redundancy of 9H2 reactive sites. The eight reactive phospopeptides were structurally related and interestingly, the most conserved antibody reactive peptide motif coincided with a subset of other known EGFR autophosphorylation and SH2 binding motifs and an EGFR optimal substrate motif. Finally, peptides based on known substrate specificities of c-src and related enzymes were synthesized in microtiter plate array format and were phosphorylated by c-Src with the predicted specificities. The level of phosphorylation was proportional to c-Src concentration with sensitivities below 0.1 Units of enzyme.
The ability of this method to interface with various robotics and instrumentation is highly flexible since the microtiter plate is an industry standard. It is highly scalable by increasing the surface area within the well or the number of wells and does not require specialized robotics. The microtiter plate array system is well suited to the study of protein kinase substrates, antigens, binding molecules, and inhibitors since these all can be quantitatively studied at a single uniform, reproducible interface.
PMCID: PMC546003  PMID: 15647109

Results 1-24 (24)