Search tips
Search criteria

Results 1-25 (71)

Clipboard (0)
Year of Publication
1.  Human CD72 splicing isoform responsible for resistance to systemic lupus erythematosus regulates serum immunoglobulin level and is localized in endoplasmic reticulum 
BMC Immunology  2012;13:72.
CD72 is an inhibitory co-receptor expressed on B cells. We previously demonstrated significant association of the polymorphism of the CD72 gene with susceptibility to human systemic lupus erythematosus (SLE) in individuals carrying a SLE-susceptible FCGR2B genotype (FCGR2B-232Thr/Thr). The human CD72 locus generates a splicing isoform that lacks exon 8 (CD72Δex8) as well as full-length CD72 (CD72fl), and the CD72 polymorphism regulates exon 8 skipping.
Here we demonstrated that individuals carrying the disease-protective CD72 genotype exhibit significantly lower serum immunoglobulin levels than do individuals carrying other CD72 genotypes (P < 0.05). Although expression level of CD72fl in the peripheral blood B cells was similar regardless of CD72 genotype, the protein level of CD72Δex8 was increased in individuals carrying the disease-protective CD72 genotype, suggesting a crucial role of CD72Δex8 in regulation of antibody production. By expressing these human CD72 isoforms in mouse cell lines, we further demonstrated that CD72Δex8 is accumulated in endoplasmic reticulum (ER) and fails to regulate BCR signaling whereas human CD72fl is efficiently transported to the cell surface and inhibits signaling through the B cell antigen receptor (BCR), as is the case for mouse CD72.
Human CD72 polymorphism appears to regulate antibody production as well as susceptibility to SLE by regulating expression of ER-localizing CD72Δex8.
PMCID: PMC3565990  PMID: 23268649
Polymorphism; Exon skipping; C-type lectin domain
2.  Humoral and cellular immune responses after influenza vaccination in patients with chronic fatigue syndrome 
BMC Immunology  2012;13:71.
Chronic fatigue syndrome (CFS) is a clinical condition characterized by severe and disabling fatigue that is medically unexplained and lasts longer than 6 months. Although it is possible to effectively treat CFS, the nature of the underlying physiology remains unclear. Various studies have sought evidence for an underlying disturbance in immunity. The aim of this study was to compare the humoral and cellular immune responses upon influenza vaccination in CFS patients and healthy controls.
Identical antibody titers were observed in CFS patients and healthy controls. Patients and controls demonstrated similar seroprotection rates against all three virus-strains of the influenza vaccine, both pre- and post-vaccination. Functional T cell reactivity was observed in both CFS patients and healthy controls. CFS patients showed a non-significant, numerically lower cellular proliferation at baseline compared to controls. Vaccination induced a significant increase in cellular proliferation in CFS patients, but not in healthy controls. Cytokine production and the number of regulatory T cells were comparable in patients and controls.
The humoral and cellular immune responses upon influenza vaccination were comparable in CFS patients and healthy controls. Putative aberrations in immune responses in CFS patients were not evident for immunity towards influenza. Standard seasonal influenza vaccination is thus justified and, when indicated, should be recommended for patients suffering from CFS.
PMCID: PMC3534525  PMID: 23244635
Chronic fatigue syndrome; Influenza; Vaccination; Humoral immunity; Cellular immunity
3.  Anti-thymocyte globulin (ATG) differentially depletes naïve and memory T cells and permits memory-type regulatory T cells in nonobese diabetic mice 
BMC Immunology  2012;13:70.
ATG has been employed to deplete T cells in several immune-mediated conditions. However, whether ATG administration affects naïve and memory T cell differently is largely unknown.
The context and purpose of the study
In this study, we assessed how murine ATG therapy affected T cell subsets in NOD mice, based on their regulatory and naïve or memory phenotype, as well as its influence on antigen-specific immune responses.
Peripheral blood CD4+ and CD8+ T cells post-ATG therapy declined to their lowest levels at day 3, while CD4+ T cells returned to normal levels more rapidly than CD8+ T cells. ATG therapy failed to eliminate antigen-primed T cells. CD4+ T cell responses post-ATG therapy skewed to T helper type 2 (Th2) and possibly IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) were less sensitive to ATG depletion and remained at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory T cell phenotype was significantly increased in ATG-treated animals.
ATG therapy may modulate antigen-specific immune responses through inducing memory-like regulatory T cells as well as other protective T cells such as Th2 and IL-10-producing Tr1 cells.
PMCID: PMC3547787  PMID: 23237483
Anti-thymocyte globulin; Naïve and memory T cells; Regulatory T cells; T helper cell; Autoimmune diabetes; Nonobese diabetic mouse
4.  Identification and characterization of H-2d restricted CD4+ T cell epitopes on Lpp20 of Helicobacter pylori 
BMC Immunology  2012;13:68.
Previous investigation has demonstrated that CD4+ T cells play a crucial role in effective immunity against Helicobacter pylori (H.pylori) infection. It has been well proved that Lpp20 is one of major protective antigens that induce immune responses after H.pylori invades host. Therefore it is valuable to identify CD4+ T cell epitopes on Lpp20, which is uncharacterized.
Putative epitopes of H-2d restricted CD4+ T cell on Lpp20 of H.pylori were predicted by the SYFPEITHI algorithm and then eight hypothetical epitope peptides were synthesized. After BALB/c mice were primed with recombinant Lpp20, splenic CD4+ T cells were isolated and stimulated with synthesized peptides to measure T cell proliferation and MHC restriction. Cytokine profile was determined by ELISA and real-time PCR. Two identified epitopes were used to immunize mice to investigate CD4+ T cell response by flow cytometry.
Two of eight peptides were able to stimulate CD4+ T cell proliferation and were mapped to residues 83-97aa and 58-72aa on Lpp20 respectively. These two peptides additively stimulated Th1 cells to secrete IFN-γ. The percentage of CD4+ T cell from mice immunized with two identified epitopes respectively was higher than the control group.
The identification and characterization of two CD4+ T cell epitopes of Lpp20 helps understand the protective immunity of Lpp20 in H.pylori infection and design effective epitope vaccines against H.pylori.
PMCID: PMC3534527  PMID: 23234363
Helicobacter pylori; Lpp20; CD4+ T cell; Epitope
5.  CD11b+Ly6C++Ly6G- cells show distinct function in mice with chronic inflammation or tumor burden 
BMC Immunology  2012;13:69.
S100A9 has been shown to be important for the function of so called Myeloid Derived Suppressor Cells (MDSC). Cells with a similar phenotype are also involved in pro-inflammatory processes, and we therefore wanted to investigate the gene expression and function of these cells in animals that were either subjected to chronic inflammation, or inoculated with tumors.
CD11b+Ly6C++ and Ly6G+ cells were isolated from spleen, tumor tissue or inflammatory granulomas. S100A9, Arginase 1 and iNOS gene expression in the various CD11b+ cell populations was analyzed using Q-PCR. The suppressive activity of the CD11b+ cell populations from different donors was studied in co-culture experiments.
S100A9 was shown to be expressed mainly in splenic CD11b+Ly6C+G+ cells both at the RNA and protein level. Arginase I and iNOS expression could be detected in both CD11b+Ly6C+Ly6G+ and CD11b+Ly6C+G-/C++G- derived from tumors or a site of chronic inflammation, but was very low in the same cell populations isolated from the spleen. CD11b+ cells isolated from mice with peritoneal chronic inflammation were able to stimulate T lymphocytes, while CD11b+ cells from mice with peritoneal tumors suppressed T cell growth.
An identical CD11b+Ly6C++G- cell population appears to have the ability to adopt immune stimulatory or immune suppressive functions dependent on the presence of a local inflammatory or tumor microenvironment. Thus, there is a functional plasticity in the CD11b+Ly6C++G- cell population that cannot be distinguished with the current molecular markers.
PMCID: PMC3541244  PMID: 23234398
Tumor; Inflammation; Myeloid cells; T cells; Suppression
6.  Sequence-based in silico analysis of well studied Hepatitis C Virus epitopes and their variants in other genotypes (particularly genotype 5a) against South African human leukocyte antigen backgrounds 
BMC Immunology  2012;13:67.
Host genetics influence the outcome of HCV disease. HCV is also highly mutable and escapes host immunity. HCV genotypes are geographically distributed and HCV subtypes have been shown to have distinct repertoires of HLA-restricted viral epitopes which explains the lack of cross protection across genotypes observed in some studies. Despite this, immune databases and putative epitope vaccines concentrate almost exclusively on HCV genotype 1 class I-epitopes restricted by the HLA-A*02 allele. While both genotype and allele predominate in developed countries, we hypothesise that HCV variation and population genetics will affect the efficacy of proposed epitope vaccines in South Africa. This in silico study investigates HCV viral variability within well-studied epitopes identified in genotype 1 and uses algorithms to predict the immunogenicity of their variants from other less studied genotypes and thus rate the most promising vaccine candidates for the South African population. Six class I- and seven class II- restricted epitope sequences within the core, NS3, NS4B and NS5B regions were compared across the six HCV genotypes using local genotype 5a sequence data together with global data. Common HLA alleles in the South African population are A30:01, A02:01, B58:02, B07:02; DRB1*13:01 and DRB1*03:01. Epitope binding to 13 class I- and 8 class –II alleles were described using web-based prediction servers, Immune Epitope Database, (IEDB) and Propred. Online population coverage tools were used to assess vaccine efficacy.
Despite the homogeneity of genotype 1 and genotype 5 over the epitopes, there was limited promiscuity to local HLA-alleles.Host differences will make a putative vaccine less effective in South Africa. Of the 6 well-characterized class I- epitopes, only 2 class I- epitopes were promiscuous and 3 of the 7 class-II epitopes were better conserved and promiscuous. By fine tuning the putative vaccine using an optimal cocktail of genotype 1 and 5a epitopes and local HLA data, the coverage was raised from 65.85% to 91.87% in South African Blacks.
While in vivo and in vitro studies are needed to confirm immunogenic epitopes, in silico HCV epitope vaccine design which takes into account HCV variation and host allele frequency will maximize population coverage in different ethnic groups.
PMCID: PMC3552980  PMID: 23227878
Epitope vaccines; Viral variation; Population coverage; HCV; HLA; Epitope prediction
7.  Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by gamma/delta T cells 
BMC Immunology  2012;13:65.
Protective responses in mice immunized with an interferon-gamma producing strain of Cryptococcus neoformans, H99γ, are associated with IL-17A production by neutrophils. Neutrophil depletion in H99γ-immunized mice did not affect pulmonary fungal burden, indicating that neutrophils are not required for clearance. However, we observed an increase in IL-17A in the lungs of neutrophil-depleted H99γ infected mice, which corresponded to an increase in IL-17A+ γδ+ T cells. Moreover, we observed increased IL-17A+/ CD3+ cells and IL-17A+/γδ+ cells, but decreased IL-17A+/Ly6G+ neutrophils in the lungs of IL-17 receptor (R)A deficient mice compared to wild-type mice. Increased production of IL-17A in neutropenic mice coincided with increased IL-6 and CXCL1, but not Th17 inducing cytokines TGF-β, IL-21 and IL-23. Concurrent depletion of neutrophils and γδ+ T cells reduced IL-17A levels. Our results suggest that γδ+ T cells mediate significant IL-17A production in neutropenic mice during the protective response to C. neoformans infection.
PMCID: PMC3538069  PMID: 23216912
Gamma-delta T cells; Cryptococcus neoformans; IL-17A; Pulmonary
8.  The major CD8 T cell effector memory subset in the normal and Chlamydia trachomatis-infected human endocervix is low in perforin 
BMC Immunology  2012;13:66.
The local tissue microenvironment plays an important role in the induction, homing, maintenance and development of effector functions of T cells. Thus, site-specific differences in phenotypes of mucosal and systemic T cell populations have been observed. Chlamydia trachomatis most commonly infects the endocervix in women, yet little is known about Chlamydia-specific effector T cell immunity at this unique mucosal site. Our previous flow-cytometry-based study of cervical-cytobrush retrieved cells indicated that CD8 T cells are significantly increased in the C. trachomatis-infected human endocervix. The cytolytic function of CD8 T cells is important in the protective immunity against many intracellular pathogens, and requires the cytolytic granule perforin to facilitate the entry of other molecules that mediate the lysis of target cells. Determination of perforin expression of the CD8 T cell population in the endocervix would therefore provide insights on the granule-mediated cytolytic potential of these cells at this site.
Our histological data revealed that C. trachomatis-infected tissues have significantly higher numbers of CD3 and CD8 T cells compared to non-infected tissues (p<0.01), and that the majority of CD8+ cells do not express perforin in situ. A subsequent flow cytometric analysis of paired blood and endocervix-derived cells (n=16) revealed that while all the CD8 T cell subsets: naïve, effector memory (TEM), central memory (TCM) and terminally differentiated effector memory (TEMRA) can be found in the blood, the endocervix is populated mainly by the TEM CD8 T cell subset. Our data also showed that perforin expression in the TEM population is significantly lower in the endocervix than in the blood of C. trachomatis positive women (n=15; p<0.0001), as well as in C. trachomatis-negative individuals (n=6; p<0.05). Interestingly, our in vitro co-culture study suggests that the exposure of HeLa 229 cervical epithelial cells to IFN gamma could potentially induce a decrease in perforin content in CD8 TEM cells in the same microenvironment.
The low perforin content of CD8 TEM cells in the endocervix, the local site of C. trachomatis infection in women, may reflect the unique immunological environment that balances immune protection against sexually transmitted infections and immune- tolerance to support conception.
PMCID: PMC3538661  PMID: 23216954
9.  The P2X7 loss-of-function Glu496Ala polymorphism affects ex vivo cytokine release and protects against the cytotoxic effects of high ATP-levels 
BMC Immunology  2012;13:64.
The P2X7 receptor plays an important role in cytokine release during the inflammatory response in vivo. Polymorphisms within the P2X7 receptor gene that lead to loss of receptor function may contribute to impaired cytokine release by immune cells. Therefore, we investigated whether a known loss-of-function polymorphism (Glu496Ala) in the P2X7 receptor gene leads to alterations in cytokine release in response to ATP.
An ex vivo whole blood model was used to induce an inflammatory reaction with the pro-inflammatory stimuli LPS and PHA (phytohemagglutinin). Blood from n=9 subjects with the Glu496Ala P2X7 SNP (P2X7MUT) and n=7 ‘wild-type’ subjects (no P2X7 SNP; P2X7WT) was used.
Addition of ATP (0.9-3 mM) to LPS/PHA-stimulated whole blood induced an increase in IL-1β release in P2X7MUT subjects, whereas decreased release was observed in P2X7WT subjects. Decreased levels of IL-6 and TNF-α in response to ATP were shown in both P2X7MUT and P2X7WT subjects, which was less pronounced in P2X7MUT subjects. ATP at 3 mM also significantly decreased levels of lactate dehydrogenase (LDH) in P2X7MUT subjects compared to P2X7WT subjects.
The presence of the non-synonymous Glu496Ala loss-of-function polymorphism within the P2X7 receptor gene is likely to be of importance in the release of cytokines during inflammation. Furthermore, this study suggests that carriers of the Glu496Ala loss-of-function polymorphism are protected against the cytotoxic effects of high ATP-levels.
PMCID: PMC3526505  PMID: 23210974
ATP; P2X7; Polymorphism; Inflammation
10.  Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond 
BMC Immunology  2012;13:63.
The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories — the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells — plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express “Pathogen Recognition Receptors” such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology.
PMCID: PMC3526508  PMID: 23194300
BcR; MZ; Breg; B-cells; TLR; Cytokines; Chemokines
11.  Elevation of soluble major histocompatibility complex class I related chain A protein in malignant and infectious diseases in Chinese patients 
BMC Immunology  2012;13:62.
Elevation of soluble major histocompatibility complex class I chain-related gene A (sMICA) products in serum has been linked to tissue/organ transplantation, autoimmune diseases and some malignant disorders. Cells infected by microbiological pathogens may release sMICA, whereas less is known whether and to what extent serum sMICA levels may change in infectious diseases.
The present study determined serum sMICA levels by enzyme-linked immunosorbent assay (ELISA) in a southern China population, including patients (n = 1041) suffering from several types of malignant and infectious diseases and healthy controls (n = 141).
Relative to controls, serum sMICA elevation was significant in patients of hepatic cancer, and was approaching statistical significance in patients with lung, gastric and nasopharyngeal cancers. sMICA elevation was also associated with some bacterial (Enterobacteriaceae, Mycobacterium tuberculosis, non-fermenting Gram-negative bacteria and Gram-positive cocci), viral (hepatitis B and C) and the Microspironema pallidum infections.
Serum sMICA levels may be informative for the diagnosis of some malignant and infectious diseases. The results also indicate that microbiological infections should be considered as a potential confounding clinical condition causing serum sMICA elevation while using this test to evaluate the status of other disorders, such as cancers, host-graft response and autoimmune diseases.
PMCID: PMC3552998  PMID: 23181907
MHC; sMICA/B; NKG2D; Cancer diagnosis; Serum
12.  New perspectives for natural antimicrobial peptides: application as antinflammatory drugs in a murine model 
BMC Immunology  2012;13:61.
Antimicrobial peptides (AMPs) are an ancient group of defense molecules. AMPs are widely distributed in nature (being present in mammals, birds, amphibians, insects, plants, and microorganisms). They display bactericidal as well as immunomodulatory properties. The aim of this study was to investigate the antimicrobial and anti-inflammatory activities of a combination of two AMPs (temporin B and the royal jellein I) against Staphylococcus epidermidis.
The temporin B (TB-KK) and the royal jelleins I, II, III chemically modified at the C terminal (RJI-C, RJII-C, RJIII-C), were tested for their activity against 10 different Staphylococcus epidermidis strains, alone and in combination. Of the three royal jelleins, RJI-C showed the highest activity. Moreover, the combination of RJI-C and TB-KK (MIX) displayed synergistic activity. In vitro, the MIX displayed low hemolytic activity, no NO2- production and the ability to curb the synthesis of the pro-inflammatory cytokines TNF-α and IFN-γ to the same extent as acetylsalicylic acid. In vivo, the MIX sterilized mice infected with Staphylococcus epidermidis in eleven days and inhibited the expression of genes encoding the prostaglandin-endoperoxide synthase 2 (COX-2) and CD64, two important parameters of inflammation.
The study shows that the MIX – a combination of two naturally occurring peptides - displays both antimicrobial and anti-inflammatory activities.
PMCID: PMC3526545  PMID: 23157568
13.  Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat 
BMC Immunology  2012;13:60.
Engineered zinc-finger nucleases (ZFN) represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB) and initiated non-homologous end joining (NHEJ) after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(D)J recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain.
After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαβ+ as well as CD8+/CD3+/TCRαβ+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat.
The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena.
PMCID: PMC3522011  PMID: 23136839
Rag1; Zinc-finger nucleases; Rat; Lymphocytes; Natural killer cells; Hypoplastic thymus
14.  Low-dose plasmid DNA treatment increases plasma vasopressin and regulates blood pressure in experimental endotoxemia 
BMC Immunology  2012;13:59.
Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation.
Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-α by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 μg of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production.
Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.
PMCID: PMC3526548  PMID: 23137350
Endotoxemic shock; Interleukin-6; Naked pcDNA3
15.  DNA methylation profile of Aire-deficient mouse medullary thymic epithelial cells 
BMC Immunology  2012;13:58.
Medullary thymic epithelial cells (mTECs) are characterized by ectopic expression of self-antigens during the establishment of central tolerance. The autoimmune regulator (Aire), which is specifically expressed in mTECs, is responsible for the expression of a large repertoire of tissue-restricted antigens (TRAs) and plays a role in the development of mTECs. However, Aire-deficient mTECs still express TRAs. Moreover, a subset of mTECs, which are considered to be at a stage of terminal differentiation, exists in the Aire-deficient thymus. The phenotype of a specific cell type in a multicellular organism is governed by the epigenetic regulation system. DNA methylation modification is an important component of this system. Every cell or tissue type displays a DNA methylation profile, consisting of tissue-dependent and differentially methylated regions (T-DMRs), and this profile is involved in cell-type-specific genome usage. The aim of this study was to examine the DNA methylation profile of mTECs by using Aire-deficient mTECs as a model.
We identified the T-DMRs of mTECs (mTEC-T-DMRs) via genome-wide DNA methylation analysis of Aire−/− mTECs by comparison with the liver, brain, thymus, and embryonic stem cells. The hypomethylated mTEC-T-DMRs in Aire−/− mTECs were associated with mTEC-specific genes, including Aire, CD80, and Trp63, as well as other genes involved in the RANK signaling pathway. While these mTEC-T-DMRs were also hypomethylated in Aire+/+ mTECs, they were hypermethylated in control thymic stromal cells. We compared the pattern of DNA methylation levels at a total of 55 mTEC-T-DMRs and adjacent regions and found that the DNA methylation status was similar for Aire+/+ and Aire−/− mTECs but distinct from that of athymic cells and tissues.
These results indicate a unique DNA methylation profile that is independent of Aire in mTECs. This profile is distinct from other cell types in the thymic microenvironment and is indicated to be involved in the differentiation of the mTEC lineage.
PMCID: PMC3546423  PMID: 23116172
Medullary thymic epithelial cells; Aire; T-DMR
16.  Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates 
BMC Immunology  2012;13:57.
Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60) are frequently used to model macrophage function.
The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR) and ion channel expression in alveolar macrophages and their widely used surrogates.
The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates.
The data described in this report provides insight into the appropriate choice of cell models for investigating macrophage biology and highlights the importance of confirming experimental data in primary alveolar macrophages.
PMCID: PMC3542584  PMID: 23102269
COPD; Microfluidics; TaqMan; Arrays; High-throughput
17.  Important role of CCR2 in a murine model of coronary vasculitis 
BMC Immunology  2012;13:56.
Chemokines and their receptors play a role in the innate immune response as well as in the disruption of the balance between pro-inflammatory Th17 cells and regulatory T cells (Treg), underlying the pathogenesis of coronary vasculitis in Kawasaki disease (KD).
Here we show that genetic inactivation of chemokine receptor (CCR)-2 is protective against the induction of aortic and coronary vasculitis following injection of Candida albicans water-soluble cell wall extracts (CAWS). Mechanistically, both T and B cells were required for the induction of vasculitis, a role that was directly modulated by CCR2. CAWS administration promoted mobilization of CCR2-dependent inflammatory monocytes (iMo) from the bone marrow (BM) to the periphery as well as production of IL-6. IL-6 was likely to contribute to the depletion of Treg and expansion of Th17 cells in CAWS-injected Ccr2+/+ mice, processes that were ameliorated following the genetic inactivation of CCR2.
Collectively, our findings provide novel insights into the role of CCR2 in the pathogenesis of vasculitis as seen in KD and highlight novel therapeutic targets, specifically for individuals resistant to first-line treatments.
PMCID: PMC3519555  PMID: 23074996
CCR2; Coronary vasculitis; Treg; Treg/Th17 imbalance
18.  Boosting immune response with the invariant chain segments via association with non-peptide binding region of major histocompatibility complex class II molecules 
BMC Immunology  2012;13:55.
Based on binding of invariant chain (Ii) to major histocompatibility complex (MHC) class II molecules to form complexes, Ii-segment hybrids, Ii-key structure linking an epitope, or Ii class II-associated invariant chain peptide (CLIP) replaced with an epitope were used to increase immune response. It is currently unknown whether the Ii-segment cytosolic and transmembrane domains bind to the MHC non-peptide binding region (PBR) and consequently influence immune response. To investigate the potential role of Ii-segments in the immune response via MHC II/peptide complexes, a few hybrids containing Ii-segments and a multiepitope (F306) from Newcastle disease virus fusion protein (F) were constructed, and their binding effects on MHC II molecules and specific antibody production were compared using confocal microscopy, immunoprecipitation, western blotting and animal experiments.
One of the Ii-segment/F306 hybrids, containing ND (Asn–Asp) outside the F306 in the Ii-key structure (Ii-key/F306/ND), neither co-localized with MHC II molecules on plasma membrane nor bound to MHC II molecules to form complexes. However, stimulation of mice with the structure produced 4-fold higher antibody titers compared with F306 alone. The two other Ii-segment/F306 hybrids, in which the transmembrane and cytosolic domains of Ii were linked to this structure (Cyt/TM/Ii-key/F306/ND), partially co-localized on plasma membrane with MHC class II molecules and weakly bound MHC II molecules to form complexes. They induced mice to produce approximately 9-fold higher antibody titers compared with F306 alone. Furthermore, an Ii/F306 hybrid (F306 substituting CLIP) co-localized well with MHC II molecules on the membrane to form complexes, although it increased antibody titer about 3-fold relative to F306 alone.
These results suggest that Ii-segments improve specific immune response by binding to the non-PBR on MHC class II molecules and enabling membrane co-localization with MHC II molecules, resulting in the formation of relatively stable MHC II/peptide complexes on the plasma membrane, and signal transduction.
PMCID: PMC3517428  PMID: 23016601
Li-segments; Epitope; Hybrid; MHC II; Antibody; Membrane co-localization
19.  Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines 
BMC Immunology  2012;13:54.
Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines.
To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited.
Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus insoluble forms of the protein antigens. If an antigen, such as EGFP, is soluble and expressed at high levels, a low-copy plasmid-cytoplasmic expression strategy is recommended; since it provokes the highest B cell responses and also induces good T cell responses. If a T cell response is preferred, a eukaryotic expression plasmid or a chromosome-based, cytoplasmic-expression strategy is more effective. For insoluble antigens such as HA, an outer membrane expression strategy is recommended.
PMCID: PMC3503649  PMID: 23013063
Salmonella Typhimurium; Live oral vaccine; Soluble and insoluble antigens; Construction strategies; Immunological comparison
20.  Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C) 
BMC Immunology  2012;13:53.
Some studies have shown that probiotics, including Lactobacillus rhamnosus CRL1505, had the potential to beneficially modulate the outcome of certain bacterial and viral respiratory infections. However, these studies did not determine the mechanism(s) by which probiotics contribute to host defense against respiratory viruses.
In this work we demonstrated that orally administered Lactobacillus rhamnosus CRL1505 (Lr1505) was able to increase the levels of IFN-γ, IL-10 and IL-6 in the respiratory tract and the number of lung CD3+CD4+IFN-γ+ T cells. To mimic the pro-inflammatory and physiopathological consecuences of RNA viral infections in the lung, we used an experimental model of lung inflammation based on the administration of the artificial viral pathogen-associated molecular pattern poly(I:C). Nasal administration of poly(I:C) to mice induced a marked impairment of lung function that was accompanied by the production of pro-inflammatory mediators and inflammatory cell recruitment into the airways. The preventive administration of Lr1505 reduced lung injuries and the production of TNF-α, IL-6, IL-8 and MCP-1 in the respiratory tract after the challenge with poly(I:C). Moreover, Lr1505 induced a significant increase in lung and serum IL-10. We also observed that Lr1505 was able to increase respiratory IFN-γ levels and the number of lung CD3+CD4+IFN-γ+ T cells after poly(I:C) challenge. Moreover, higher numbers of both CD103+ and CD11bhigh dendritic cells and increased expression of MHC-II, IL-12 and IFN-γ in these cell populations were found in lungs of Lr1505-treated mice. Therefore, Lr1505 treatment would beneficially regulate the balance between pro-inflammatory mediators and IL-10, allowing an effective inflammatory response against infection and avoiding tissue damage.
Results showed that Lr1505 would induce a mobilization of cells from intestine and changes in cytokine profile that would be able to beneficially modulate the respiratory mucosal immunity. Although deeper studies are needed using challenges with respiratory viruses, the results in this study suggest that Lr1505, a potent inducer of antiviral cytokines, may be useful as a prophylactic agent to control respiratory virus infection.
PMCID: PMC3460727  PMID: 22989047
L. rhamnosus CRL1505; Poly(I:C); Antiviral immunity; Respiratory tract
21.  Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire 
BMC Immunology  2012;13:52.
Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surveillance, and host immune response to vaccines. In particular, single-molecule circular consensus sequencing permits the sequencing of antibody repertoires at previously unattainable depths of coverage and accuracy. We approached the bovine immunoglobulin G (IgG) repertoire with the objective of characterizing diversity of expressed IgG transcripts. Here we present single-molecule real-time sequencing data of expressed IgG heavy-chain repertoires of four individual cattle. We describe the diversity observed within antigen binding regions and visualize this diversity using a network-based approach.
We generated 49,945 high quality cDNA sequences, each spanning the entire IgG variable region from four Bos taurus calves. From these sequences we identified 49,521 antigen binding regions using the automated Paratome web server. Approximately 9% of all unique complementarity determining 2 (CDR2) sequences were of variable lengths. A bimodal distribution of unique CDR3 sequence lengths was observed, with common lengths of 5–6 and 21–25 amino acids. The average number of cysteine residues in CDR3s increased with CDR3 length and we observed that cysteine residues were centrally located in CDR3s. We identified 19 extremely long CDR3 sequences (up to 62 amino acids in length) within IgG transcripts. Network analyses revealed distinct patterns among the expressed IgG antigen binding repertoires of the examined individuals.
We utilized circular consensus sequencing technology to provide baseline data of the expressed bovine IgG repertoire that can be used for future studies important to livestock research. Somatic mutation resulting in base insertions and deletions in CDR2 further diversifies the bovine antibody repertoire. In contrast to previous studies, our data indicate that unusually long CDR3 sequences are not unique to IgM antibodies in cattle. Centrally located cysteine residues in bovine CDR3s provide further evidence that disulfide bond formation is likely of structural importance. We hypothesize that network or cluster-based analyses of expressed antibody repertoires from controlled challenge experiments will help identify novel natural antigen binding solutions to specific pathogens of interest.
PMCID: PMC3500647  PMID: 22978666
Antibody diversity; Bos taurus; SMRT sequencing; Immunoglobulin G
22.  Characterization of functional mannose receptor in a continuous hybridoma cell line 
BMC Immunology  2012;13:51.
The mannose receptor is the best described member of the type I transmembrane C-type lectins; however much remains unanswered about the biology of the receptor. One difficulty has been the inability to consistently express high levels of a functional full length mannose receptor cDNA in mammalian cells. Another difficulty has been the lack of a human macrophage cell line expressing a fully functional receptor. Commonly used human macrophage cell lines such as U937, THP-1, Mono-Mac and HL60 do not express the mannose receptor. We have developed a macrophage hybridoma cell line (43MR cells) created by fusion of U937 cells with primary human monocyte-derived macrophages, resulting in a non-adherent cell line expressing several properties of primary macrophages. The purpose of this study was to identify and select mannose receptor-expressing cells using fluorescence-activated cell sorting and to characterize the expression and function of the receptor.
In the current study we show that the mannose receptor found on this novel cell has endocytic characteristics consistent with and similar to the mannose receptor found on the surface of monocyte-derived human macrophages and rat bone marrow-derived macrophages. In addition, we demonstrate that these cells engage and internalize pathogen particles such as S. aureus and C. albicans. We further establish the transfectability of these cells via the introduction of a plasmid expressing influenza A hemagglutinin.
The 43MR cell line represents the first naturally expressed MR-positive cell line derived from a human macrophage background. This cell line provides an important cell model for other researchers for the study of human MR biology and host-pathogen interactions.
PMCID: PMC3495026  PMID: 22967244
23.  Residue analysis of a CTL epitope of SARS-CoV spike protein by IFN-gamma production and bioinformatics prediction 
BMC Immunology  2012;13:50.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by the novel coronavirus SARS-CoV. The T cell epitopes of the SARS CoV spike protein are well known, but no systematic evaluation of the functional and structural roles of each residue has been reported for these antigenic epitopes. Analysis of the functional importance of side-chains by mutational study may exaggerate the effect by imposing a structural disturbance or an unusual steric, electrostatic or hydrophobic interaction.
We demonstrated that N50 could induce significant IFN-gamma response from SARS-CoV S DNA immunized mice splenocytes by the means of ELISA, ELISPOT and FACS. Moreover, S366-374 was predicted to be an optimal epitope by bioinformatics tools: ANN, SMM, ARB and BIMAS, and confirmed by IFN-gamma response induced by a series of S358-374-derived peptides. Furthermore, each of S366-374 was replaced by alanine (A), lysine (K) or aspartic acid (D), respectively. ANN was used to estimate the binding affinity of single S366-374 mutants to H-2 Kd. Y367 and L374 were predicated to possess the most important role in peptide binding. Additionally, these one residue mutated peptides were synthesized, and IFN-gamma production induced by G368, V369, A371, T372 and K373 mutated S366-374 were decreased obviously.
We demonstrated that S366-374 is an optimal H-2 Kd CTL epitope in the SARS CoV S protein. Moreover, Y367, S370, and L374 are anchors in the epitope, while C366, G368, V369, A371, T372, and K373 may directly interact with TCR on the surface of CD8-T cells.
PMCID: PMC3575293  PMID: 22963340
SARS-CoV; CTL; Epitope; Residue
24.  Responses to pandemic ASO3-adjuvanted A/California/07/09 H1N1 influenza vaccine in human immunodeficiency virus-infected individuals 
BMC Immunology  2012;13:49.
Influenza infection may be more serious in human immunodeficiency virus (HIV)-infected individuals, therefore, vaccination against seasonal and pandemic strains is highly advised. Seasonal influenza vaccines have had no significant negative effects in well controlled HIV infection, but the impact of adjuvanted pandemic A/California/07/2009 H1N1 influenza hemaglutinin (HA) vaccine, which was used for the first time in the Canadian population as an authorized vaccine in autumn 2009, has not been extensively studied.
Assess vaccine-related effects on CD4+ T cell counts and humoral responses to the vaccine in individuals attending the Newfoundland and Labrador Provincial HIV clinic.
A single dose of ArepanrixTM split vaccine including 3.75 μg A/California/07/2009 H1N1 HA antigen and ASO3 adjuvant was administered to 81 HIV-infected individuals by intramuscular injection. Plasma samples from shortly before, and 1–5 months after vaccination were collected from 80/81 individuals to assess humoral anti-H1N1 HA responses using a sensitive microbead-based array assay. Data on CD4+ T cell counts, plasma viral load, antiretroviral therapy and patient age were collected from clinical records of 81 individuals.
Overall, 36/80 responded to vaccination either by seroconversion to H1N1 HA or with a clear increase in anti-H1N1 HA antibody levels. Approximately 1/3 (28/80) had pre-existing anti-H1N1 HA antibodies and were more likely to respond to vaccination (22/28). Responders had higher baseline CD4+ T cell counts and responders without pre-existing antibodies against H1N1 HA were younger than either non-responders or responders with pre-existing antibodies. Compared to changes in their CD4+ T cell counts observed over a similar time period one year later, vaccine recipients displayed a minor, transient fall in CD4+ T cell numbers, which was greater amongst responders.
We observed low response rates to the 2009 pandemic influenza vaccine among HIV-infected individuals without pre-existing antibodies against H1N1 HA and a minor transient fall in CD4+ T cell numbers, which was accentuated in responders. A single injection of the ArepanrixTM pandemic A/California/07/2009 H1N1 HA split vaccine may be insufficient to induce protective immunity in HIV-infected individuals without pre-existing anti-H1N1 HA responses.
PMCID: PMC3482569  PMID: 22937824
HIV; influenza; pandemic; A/California/07/2009 H1N1 HA antigen; AS03 oil in water adjuvant; inflammation; CD4+ T cells; age
25.  Serum activity of DPPIV and its expression on lymphocytes in patients with melanoma and in people with vitiligo 
BMC Immunology  2012;13:48.
Dipeptidyl peptidase IV, a multifunctional serine protease, is implicated in regulation of malignant transformation, promotion and further progression of cancer, exerting tumor-suppressing or even completely opposite - tumor-promoting activities.
The aim of present research was to determine the serum DPPIV activity, as well as the percentages of CD26+ lymphocytes, CD26+ overall white blood cells and the mean fluorescence intensity of CD26 expression on lymphocytes in patients with melanoma, people with vitiligo and in healthy controls.
The activity of DPPIV in serum was determined by colorimetric test. Expression of DPPIV (as CD26) on immunocompetent peripheral white blood cells was done using flow cytometry analysis.
Data from our study show for the first time statistically significant decrease: in the serum DPPIV activity, in the percentage of CD26+ overall white blood cells and in the percentage of lymphocytes in patients with melanoma in comparison to healthy control people. In addition, significantly lower serum DPPIV activity was found in the group of patients with melanoma in relation to people with vitiligo too.
This study indicates the need for exploring the cause and the importance of the disturbances in the serum DPPIV activity and in the CD26 expression on immunocompetent cells in complex molecular mechanisms underlying the development and progression of melanoma.
PMCID: PMC3464610  PMID: 22908963
CD26 expression; DPPIV serum activity; Melanoma; Vitiligo

Results 1-25 (71)