PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Precision and linearity targets for validation of an IFNγ ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides 
BMC Immunology  2008;9:9.
Background
Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. Standardization and validation of such assays are therefore important to interpretation of the clinical trial data. Here we assess the levels of intra-assay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC), as well as tetramer assays.
Results
Precision was measured in cryopreserved PBMC with a low, medium, or high response level to a CMV pp65 peptide or peptide mixture. Intra-assay precision was assessed using 6 replicates per assay; inter-assay precision was assessed by performing 8 assays on different days; and inter-operator precision was assessed using 3 different operators working on the same day. Percent CV values ranged from 4% to 133% depending upon the assay and response level. Linearity was measured by diluting PBMC from a high responder into PBMC from a non-responder, and yielded R2 values from 0.85 to 0.99 depending upon the assay and antigen.
Conclusion
These data provide target values for precision and linearity of single-cell assays for those wishing to validate these assays in their own laboratories. They also allow for comparison of the precision and linearity of ELISPOT, CFC, and tetramer across a range of response levels. There was a trend toward tetramer assays showing the highest precision, followed closely by CFC, and then ELISPOT; while all three assays had similar linearity. These findings are contingent upon the use of optimized protocols for each assay.
doi:10.1186/1471-2172-9-9
PMCID: PMC2275721  PMID: 18366814
2.  Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT 
BMC Immunology  2005;6:17.
Background
Cryopreservation of PBMC and/or overnight shipping of samples are required for many clinical trials, despite their potentially adverse effects upon immune monitoring assays such as MHC-peptide tetramer staining, cytokine flow cytometry (CFC), and ELISPOT. In this study, we compared the performance of these assays on leukapheresed PBMC shipped overnight in medium versus cryopreserved PBMC from matched donors.
Results
Using CMV pp65 peptide pool stimulation or pp65 HLA-A2 tetramer staining, there was significant correlation between shipped and cryopreserved samples for each assay (p ≤ 0.001). The differences in response magnitude between cryopreserved and shipped PBMC specimens were not significant for most antigens and assays. There was significant correlation between CFC and ELISPOT assay using pp65 peptide pool stimulation, in both shipped and cryopreserved samples (p ≤ 0.001). Strong correlation was observed between CFC (using HLA-A2-restricted pp65 peptide stimulation) and tetramer staining (p < 0.001). Roughly similar sensitivity and specificity were observed between the three assays and between shipped and cryopreserved samples for each assay.
Conclusion
We conclude that all three assays show concordant results on shipped versus cryopreserved specimens, when using a peptide-based readout. The assays are also concordant with each other in pair wise comparisons using equivalent antigen systems.
doi:10.1186/1471-2172-6-17
PMCID: PMC1190174  PMID: 16026627
3.  Standardization of cytokine flow cytometry assays 
BMC Immunology  2005;6:13.
Background
Cytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online).
Results
Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results (CD4+cytokine+ cells and CD8+cytokine+ cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template.
Mean inter-laboratory coefficient of variation (C.V.) ranged from 17–44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5–20%, depending upon the experiment. The inter-lab C.V. was lowest (18–24%) for samples with a mean of >0.5% IFNγ + T cells, and highest (57–82%) for samples with a mean of <0.1% IFNγ + cells.
Conclusion
ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays.
doi:10.1186/1471-2172-6-13
PMCID: PMC1184077  PMID: 15978127
4.  Performance of plate-based cytokine flow cytometry with automated data analysis 
BMC Immunology  2003;4:9.
Background
Cytokine flow cytometry (CFC) provides a multiparameter alternative to ELISPOT assays for rapid quantitation of antigen-specific T cells. To increase the throughput of CFC assays, we have optimized methods for stimulating, staining, and acquiring whole blood or PBMC samples in 96-well or 24-well plates.
Results
We have developed a protocol for whole blood stimulation and processing in deep-well 24- or 96-well plates, and fresh or cryopreserved peripheral blood mononuclear cell (PBMC) stimulation and processing in conventional 96-well round-bottom plates. Samples from both HIV-1-seronegative and HIV-1-seropositive donors were tested. We show that the percent response, staining intensity, and cell recovery are comparable to stimulation and processing in tubes using traditional methods. We also show the equivalence of automated gating templates to manual gating for CFC data analysis.
Conclusion
When combined with flow cytometry analysis using an automated plate loader and an automated analysis algorithm, these plate-based methods provide a higher throughput platform for CFC, as well as reducing operator-induced variability. These factors will be important for processing the numbers of samples required in large clinical trials, and for epitope mapping of patient responses.
doi:10.1186/1471-2172-4-9
PMCID: PMC200973  PMID: 12952557
5.  Human CD81 directly enhances Th1 and Th2 cell activation, but preferentially induces proliferation of Th2 cells upon long-term stimulation 
BMC Immunology  2003;4:1.
Background
CD81, a cell-surface protein of the tetraspanin superfamily, has been shown to costimulate T cell activation in murine T cells, and is involved in development of Th2 immune responses in mice.
Results
Here it is shown that stimulation of CD81 on human T cells can enhance T cell activation by antigen or superantigen, causing an increase in the early activation marker CD69, and increasing the number of cytokine-producing and proliferating T cells. Interestingly, CD81 costimulates cytokine production by T cells producing both Th1 and Th2 cytokines. Although human CD81 is highly expressed on non-T as well as T cells, CD81 costimulation appears to act directly on T cells. Pre-incubation of purified T cells with anti-CD81 antibody is sufficient to increase T cell activation, while pre-incubation of non-T cells is not. However, long-term polyclonal stimulation of T cells by anti-CD3 antibody, in the presence of CD81 costimulation, biases T cells towards the production of IL-4 and not IFNγ. This is accomplished by a preferential proliferation of IL-4-producing cells.
Conclusion
Thus, signalling through CD81 on T cells costimulates both Th1 and Th2 cells, but increases the number of Th2 cells during long-term activation.
doi:10.1186/1471-2172-4-1
PMCID: PMC151668  PMID: 12597781

Results 1-5 (5)