PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Precision and linearity targets for validation of an IFNγ ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides 
BMC Immunology  2008;9:9.
Background
Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. Standardization and validation of such assays are therefore important to interpretation of the clinical trial data. Here we assess the levels of intra-assay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC), as well as tetramer assays.
Results
Precision was measured in cryopreserved PBMC with a low, medium, or high response level to a CMV pp65 peptide or peptide mixture. Intra-assay precision was assessed using 6 replicates per assay; inter-assay precision was assessed by performing 8 assays on different days; and inter-operator precision was assessed using 3 different operators working on the same day. Percent CV values ranged from 4% to 133% depending upon the assay and response level. Linearity was measured by diluting PBMC from a high responder into PBMC from a non-responder, and yielded R2 values from 0.85 to 0.99 depending upon the assay and antigen.
Conclusion
These data provide target values for precision and linearity of single-cell assays for those wishing to validate these assays in their own laboratories. They also allow for comparison of the precision and linearity of ELISPOT, CFC, and tetramer across a range of response levels. There was a trend toward tetramer assays showing the highest precision, followed closely by CFC, and then ELISPOT; while all three assays had similar linearity. These findings are contingent upon the use of optimized protocols for each assay.
doi:10.1186/1471-2172-9-9
PMCID: PMC2275721  PMID: 18366814
2.  Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT 
BMC Immunology  2005;6:17.
Background
Cryopreservation of PBMC and/or overnight shipping of samples are required for many clinical trials, despite their potentially adverse effects upon immune monitoring assays such as MHC-peptide tetramer staining, cytokine flow cytometry (CFC), and ELISPOT. In this study, we compared the performance of these assays on leukapheresed PBMC shipped overnight in medium versus cryopreserved PBMC from matched donors.
Results
Using CMV pp65 peptide pool stimulation or pp65 HLA-A2 tetramer staining, there was significant correlation between shipped and cryopreserved samples for each assay (p ≤ 0.001). The differences in response magnitude between cryopreserved and shipped PBMC specimens were not significant for most antigens and assays. There was significant correlation between CFC and ELISPOT assay using pp65 peptide pool stimulation, in both shipped and cryopreserved samples (p ≤ 0.001). Strong correlation was observed between CFC (using HLA-A2-restricted pp65 peptide stimulation) and tetramer staining (p < 0.001). Roughly similar sensitivity and specificity were observed between the three assays and between shipped and cryopreserved samples for each assay.
Conclusion
We conclude that all three assays show concordant results on shipped versus cryopreserved specimens, when using a peptide-based readout. The assays are also concordant with each other in pair wise comparisons using equivalent antigen systems.
doi:10.1186/1471-2172-6-17
PMCID: PMC1190174  PMID: 16026627

Results 1-2 (2)