PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  CD8α is expressed by human monocytes and enhances FcγR-dependent responses 
BMC Immunology  2007;8:12.
Background
CD8α enhances the responses of antigen-specific CTL activated through TCR through binding MHC class I, favoring lipid raft partitioning of TCR, and inducing intracellular signaling. CD8α is also found on dendritic cells and rat macrophages, but whether CD8α enhances responses of a partner receptor, like TCR, to activate these cells is not known. TCR and FcR, use analogous or occasionally interchangeable signaling mechanisms suggesting the possibility that CD8α co-activates FcR responses. Interestingly, CD8α+ monocytes are often associated with rat models of disease involving immune-complex deposition and FcR-mediated pathology, such as arthritis, glomerulonephritis, ischaemia, and tumors. While rat macrophages have been shown to express CD8α evidence for CD8α expression by mouse or human monocytes or macrophages was incomplete.
Results
We detected CD8α, but not CD8β on human monocytes and the monocytic cell line THP-1 by flow cytometry. Reactivity of anti-CD8α mAb with monocytes is at least partly independent of FcR as anti-CD8α mAb detect CD8α by western blot and inhibit binding of MHC class I tetramers. CD8α mRNA is also found in monocytes and THP-1 suggesting CD8α is synthesized by monocytes and not acquired from other CD8α+ cell types. Interestingly, CD8α from monocytes and blood T cells presented distinguishable patterns by 2-D electrophoresis. Anti-CD8α mAb alone did not activate monocyte TNF release. In comparison, TNF release by human monocytes stimulated in a FcR-dependent manner with immune-complexes was enhanced by inclusion of anti-CD8α mAb in immune-complexes.
Conclusion
Human monocytes express CD8α. Co-engagement of CD8α and FcR enhances monocyte TNF release, suggesting FcR may be a novel partner receptor for CD8α on innate immune cells.
doi:10.1186/1471-2172-8-12
PMCID: PMC2000912  PMID: 17678538
2.  Modulation of neutrophil function by the tripeptide feG 
BMC Immunology  2003;4:3.
Background
Neutrophils are critical in the defense against potentially harmful microorganisms, but their excessive and inappropriate activation can contribute significantly to tissue damage and a worsening pathology. Through the release of endocrine factors submandibular glands contribute to achieving a balance in neutrophil function by modulating the state of activation and migratory potential of circulating neutrophils. A putative hormonal candidate for these effects on neutrophils was identified as a heptapeptide named submandibular gland peptide T (SGP-T; sequence = TDIFEGG). Since the tripeptide FEG, derived from SGP-T, and its D-amino acid analogue feG had similar inhibitory effects on inflammatory reactions, we investigated the effects of feG on human and rat neutrophil function.
Results
With human neutrophils feG had no discernible effect on oxidative burst or phagocytosis, but in picomolar amounts it reduced PAF-induced neutrophil movement and adhesion, and the binding of CD11b by 34% and that of CD16b close to control values. In the rat feG (10-11M) reduced the binding of CD11b and CD16 antibodies to PAF-stimulated circulating neutrophils by 35% and 43%, respectively, and at 100 micrograms/kilograms intraperitoneally feG reduced neutrophil in vivo migration by 40%. With ovalbumin-sensitized rats that were challenged with antigen, feG inhibited binding of antibodies against CD16b but not CD11b, on peritoneal leukocytes.
Conclusions
The inhibitory effect of feG on neutrophil movement may be mediated by alterations in the co-stimulatory molecules CD11b and CD16.
doi:10.1186/1471-2172-4-3
PMCID: PMC152650  PMID: 12659660

Results 1-2 (2)