Search tips
Search criteria

Results 1-25 (623)

Clipboard (0)
Year of Publication
more »
Document Types
1.  IL-17 and IL-23 in lupus nephritis - association to histopathology and response to treatment 
BMC Immunology  2015;16(1):7.
Recent studies indicate a central role for the IL-23/IL-17 axis in the pathogenesis of lupus nephritis (LN) but the importance in the context of treatment outcome is unknown. We studied various cytokines, including the IL-23/IL-17 axis, in association to histopathology and response to therapy.
Fifty-two patients with active LN were included. Renal biopsies were performed at baseline and after immunosuppressive treatment. Serum levels of TNF-α, IFN-γ, IL-6, IL-10, IL-17, IL-23 and TGF-β were analysed at both biopsy occasions and in 13 healthy controls. IL-17 expression in renal tissue was assessed by immunohistochemistry. Biopsies were evaluated regarding WHO-classification and renal disease activity was estimated using the BILAG-index. Improvement of 2 grades in renal BILAG was regarded complete response, and 1 grade partial response.
At baseline, all patients had high disease activity (BILAG A/B). Baseline levels of IL-6, IL-10, IL-17, IL-23 (p < 0.001) and IFN-γ (p = 0.03) were increased in patients vs. controls. In contrast, TGF-β was lower in patients compared to controls (p < 0.001).
Baseline levels of IL-17 were higher in patients with persisting active nephritis (WHO III, IV, V) after treatment, i.e. a poor histological response, vs. WHO I-II (p < 0.03). At follow-up, IL-23 were higher in BILAG-non-responders vs. responders (p < 0.05). Immunostaining of renal tissue revealed IL-17 expression in inflammatory infiltrates.
High baseline IL-17 predicted an unfavourable histopathological response, and BILAG-non-responders had high IL-23, indicating that that a subset of LN-patients has a Th-17 phenotype that may influence response to treatment and could be evaluated as a biomarker for poor therapeutic response.
PMCID: PMC4326189
2.  CXCL13 antibody for the treatment of autoimmune disorders 
BMC Immunology  2015;16(1):6.
Homeostatic B Cell-Attracting chemokine 1 (BCA-1) otherwise known as CXCL13 is constitutively expressed in secondary lymphoid organs by follicular dendritic cells (FDC) and macrophages. It is the only known ligand for the CXCR5 receptor, which is expressed on mature B cells, follicular helper T cells (Tfh), Th17 cells and regulatory T (Treg) cells. Aberrant expression of CXCL13 within ectopic germinal centers has been linked to the development of autoimmune disorders (e.g. Rheumatoid Arthritis, Multiple Sclerosis, Systemic Lupus Erythematosis). We, therefore, hypothesized that antibody-mediated disruption of the CXCL13 signaling pathway would interfere with the formation of ectopic lymphoid follicles in the target organs and inhibit autoimmune disease progression. This work describes pre-clinical development of human anti-CXCL13 antibody MAb 5261 and includes therapeutic efficacy data of its mouse counterpart in murine models of autoimmunity.
We developed a human IgG1 monoclonal antibody, MAb 5261 that specifically binds to human, rodent and primate CXCL13 with an affinity of approximately 5 nM and is capable of neutralizing the activity of CXCL13 from these various species in in vitro functional assays. For in vivo studies we have engineered a chimeric antibody to contain the same human heavy and light chain variable genes along with mouse constant regions. Treatment with this antibody led to a reduction in the number of germinal centers in mice immunized with 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Keyhole Limpet Hemocyanin (NP-KLH) and, in adoptive transfer studies, interfered with the trafficking of B cells to the B cell areas of mouse spleen. Furthermore, this mouse anti-CXCL13 antibody demonstrated efficacy in a mouse model of Rheumatoid arthritis (Collagen-Induced Arthritis (CIA)) and Th17-mediated murine model of Multiple Sclerosis (passively-induced Experimental Autoimmune Encephalomyelitis (EAE)).
We developed a novel therapeutic antibody targeting CXCL13-mediated signaling pathway for the treatment of autoimmune disorders.
PMCID: PMC4329654
CXCL13; Chemokine; Monoclonal antibody; Collagen-induced arthritis; Experimental autoimmune encephalomyelitis
3.  MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis 
BMC Immunology  2015;16:5.
Excessive and inappropriate immune responses are the hallmark of several autoimmune disorders, including the inflammatory bowel diseases (IBD): Crohn’s disease (CD) and ulcerative colitis (UC). A complex etiology involving both environmental and genetic factors influences IBD pathogenesis. The role of microRNAs (miRNAs), noncoding RNAs involved in regulating numerous biological processes, to IBD pathology, in terms of initiation and progression, remains ill-defined. In the present study, we evaluated the relationship between colon, peripheral blood, and saliva whole miRNome expression in IBD patients and non-inflammatory bowel disease (non-IBD) controls to identify miRNAs that could discriminate CD from UC. Quantitative real-time PCR (qRT-PCR) was used to validate and assess miRNA expression.
Microarray analysis demonstrated that upwards of twenty six miRNAs were changed in CD and UC colon biopsies relative to the non-IBD controls. CD was associated with the differential expression of 10 miRNAs while UC was associated with 6 miRNAs in matched colon tissues. CD was associated with altered expression of 6 miRNAs while UC was associated with 9 miRNAs in whole blood. Expression of miR-101 in CD patients and miR-21, miR-31, miR-142-3p, and miR-142-5p in UC patients were altered in saliva.
Our results suggest that there is specific miRNA expression patterns associated with UC versus CD in three separate tissue/body fluids (colon, blood, and saliva). Further, the aberrant miRNA expression profiles indicate that miRNAs may be contributory to IBD pathogenesis, or at least reflect the underlying inflammation. Scrutinizing miRNA expression in saliva and blood samples may be beneficial in monitoring or diagnosing disease in IBD patients. A panel of miRNAs (miR-19a, miR-21, miR-31, miR-101, miR-146a, and miR-375) may be used as markers to identify and discriminate between CD and UC.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-015-0069-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4335694
microRNAs; IBD; Blood; Colon; Saliva
4.  A laboratory test based on determination of cytokine profiles: a promising assay to identify exposition to contact allergens and predict the clinical outcome in occupational allergic contact dermatitis 
BMC Immunology  2015;16:4.
Para-phenylenediamine (PPD) is the main allergen causing adverse reactions to hair dyes and a frequent cause of occupational-related skin sensitization among hairdressers and beauticians. The immunologic mechanism of the disease relies on the production of inflammatory cytokines by allergen-specific T cells, while regulatory T cells are thought to down-modulate the allergic response. This study was aimed at investigating the expression of effector or regulatory cytokines in exposed subjects in order to verify whether different cytokine profiles might predict distinct clinical outcomes. Peripheral blood mononuclear cells (PBMC) from 21 subjects occupationally exposed or not (10) to PPD were kept in short term cultures in the presence of optimized concentrations of NiSO4 × 6H2O or PPD. The production of IFN-γ and IL-10 elicited by antigens were analyzed by the ELISpot assay.
The presence of IFN-γ responses toward PPD was significantly correlated with a positive patch test (P = 0.002) and allergic symptoms, while IL10 responses were invariably found in PPD-exposed but clinically asymptomatic subjects with negative patch testing. We found concordance between the different cytokine profiles and patch test results. No false-positive results were found for the different cytokine profiles induced by PPD, resulting in 100% specificity. The sensitivity of the test was 87.5% (95% CI 65.9-100.0) with an overall test accuracy of 93.3%. Although larger prospective-retrospective studies are necessary to validate the predictive potential of the test, the negative and positive predicted values for PPD in this study were NPV = 87.5% and PPV = 100%, respectively.
These data indicate that distinct cytokine profiles are associated with different clinical manifestations. The test, which is based on a simple and rapid profiling of cytokine responses by T lymphocytes against allergens, has proven to be a promising laboratory tool, useful for both the identification of previous contact with allergens and the etiologic diagnosis of contact allergies as well as capable of predicting the clinical outcome (development of an allergic or tolerant response).
PMCID: PMC4335538  PMID: 25651756
Allergic contact dermatitis; Cytokines; ELISpot; Nickel; Occupation; Para-phenylenediamine; Patch test
5.  Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM 
BMC Immunology  2015;16(1):1.
Adoptive transfer of tumor infiltrating or circulating lymphocytes transduced with tumor antigen receptors has been examined in various clinical trials to treat human cancers. The tumor antigens targeted by transferred lymphocytes affects the efficacy of this therapeutic approach. Because cancer stem cells (CSCs) play an important role in tumor growth and metastasis, we hypothesized that adoptive transfer of T cells targeting a CSC antigen could result in dramatic anti-tumor effects.
An EpCAM-specific chimeric antigen receptor (CAR) was constructed to transduce human peripheral blood lymphocytes (PBLs) and thereby enable them to target the CSC marker EpCAM. To investigate the therapeutic capabilities of PBLs expressing EpCAM-specific CARs, we used two different tumor models, PC3, the human prostate cancer cell line, which has low expression levels of EpCAM, and PC3M, a highly metastatic clone of PC3 that has high expression levels of EpCAM. We demonstrate that CAR-expressing PBLs can kill PC3M tumor cells in vitro and in vivo. Despite the low expression of EpCAM on PC3 cells, CAR-expressing PBLs significantly inhibited tumor growth and prolonged mouse survival in a PC3 metastasis model, probably by targeting the highly proliferative and metastatic population of cancer cells.
Our data demonstrate that PBLs expressing with EpCAM-specific CARs have significant anti-tumor activity against prostate cancer. Therefore, the adoptive transfer of T cells targeting EpCAM could have great potential as a cancer treatment.
PMCID: PMC4318439  PMID: 25636521
Adoptive T-cell transfer; Chimeric antigen receptor; Cancer stem cell; EpCAM; Prostate cancer
6.  Elevated levels of dehydroepiandrosterone as a potential mechanism of dendritic cell impairment during pregnancy 
BMC Immunology  2015;16(1):2.
This study aimed to test the hypothesis that immune dysfunction and the increased risk of spontaneous abortion in pregnant women with hyperandrogenia (HA) are caused by the reduced tolerogenic potential of dendritic cells (DCs) that results from elevated levels of dehydroepiandrosterone sulfate (DHEAS).
The phenotypic and functional properties of monocyte-derived DCs generated from blood monocytes from non-pregnant women, women with a normal pregnancy, or pregnant women with HA, as well as the in vitro effects of DHEAS on DCs in healthy pregnant women were investigated.
In a normal pregnancy, DCs were shown to be immature and are characterized by a reduced number of CD83+ and CD25+ DCs, the ability to stimulate type 2 T cell responses and to induce T cell apoptosis. By contrast, DCs from pregnant women with HA had a mature phenotype, were able to stimulate both type 1 (IFN-γ) and type 2 (IL-4) T cell responses, and were characterized by lower B7-H1 expression and cytotoxic activity against CD8+ T cells. The addition of DHEAS to cultures of DCs from healthy pregnant women induced the maturation of DCs and increased their ability to activate type 1 T cell responses.
Our data demonstrated the reduction in the tolerogenic potential of DCs from pregnant women with HA, and revealed new mechanisms involved in the hormonal regulation of DCs mediated by DHEAS.
PMCID: PMC4322645  PMID: 25636695
Dendritic cells; Dehydroepiandrosterone sulfate (DHEAS); Pregnancy; Tolerogenic activity
7.  LPS stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40-Ligand 
BMC Immunology  2015;16(1):3.
Platelets are instrumental to primary haemostasis; in addition, as they are central to endothelium vascular repair, they play a role in physiological inflammation. Platelets have also been demonstrated to be key players in innate immunity and inflammation, expressing Toll-like receptors (TLRs) to sense microbial infection and initiate inflammatory responses. They are equipped to decipher distinct signals, to use alternate pathways of signalling through a complete signalosome, despite their lack of a nucleus, and to adjust the innate immune response appropriately for pathogens exhibiting different types of ‘danger’ signals. Previous work has described the two main LPS isoforms-TLR4 activation pathways in purified platelets. However, the precise mechanism of TLR4 signalling in platelets is not completely unravelled, especially how this signalling may occur since platelets do not express CD14, the TLR4 pathophysiological companion for LPS sensing. Thus, we investigated from what source the CD14 molecules required for TLR4 signalling in platelets could come.
Here we show that CD14, required for optimal response to LPS stimulation, is obtained from plasma, but used with restrictive regulation. These data add to the body of evidence that platelets are closer to regulatory cells than to first line defenders. The readout of our experiments is the canonical secreted cytokine-like protein, soluble (s)CD40L, a molecule that is central in physiology and pathology and that is abundantly secreted by platelets from the alpha-granules upon stimulation.
We show that sCD14 from plasma contributes to LPS/TLR4 signalling in platelets to allow significant release of soluble CD40L, thereby elucidating the mechanism of LPS-induced platelet responses and providing new insights for reducing LPS toxicity in the circulation.
PMCID: PMC4322959  PMID: 25636826
Cytokine; Inflammation; Lipopolysaccharide; Platelet; Soluble CD14; TLR4
8.  Vibrio cholerae ghosts (VCG) exert immunomodulatory effect on dendritic cells for enhanced antigen presentation and induction of protective immunity 
BMC Immunology  2014;15(1):584.
We previously showed that the Vibrio cholerae ghost platform (VCG; empty V. cholerae cell envelopes) is an effective delivery system for vaccine antigens promoting the induction of substantial immunity in the absence of external adjuvants. However, the mechanism by which these cell envelopes enhance immunity and stimulate a predominantly Th1 cellular and humoral immune response has not been elucidated. We hypothesized that the immunostimulatory ability of VCG involves dendritic cell (DC) activation.
The aims of this study were: a) to investigate the ability of DCs [using mouse bone marrow-derived DCs (BMDCs) as a model system] to take up and internalize VCGs; b) to evaluate the immunomodulatory effect of internalized VCGs on DC activation and maturation and their functional capacity to present chlamydial antigen to naïve and infection-sensitized CD4+ T cells and; c) to evaluate the ability of VCGs to enhance the protective immunity of a chlamydial antigen.
VCGs were efficiently internalized by DCs without affecting their viability and modulated DC-mediated immune responses. VCG-pulsed DCs showed increased secretion of proinflammatory cytokines and expression of co-stimulatory molecules associated with DC maturation in response to stimulation with UV-irradiated chlamydial elementary bodies (UV-EBs). Furthermore, this interaction resulted in effective chlamydial antigen presentation to infection-sensitized but not naïve CD4+ T cells and enhancement of protective immunity.
The present study demonstrated that VCGs activate DCs leading to the surface expression of co-stimulatory molecules associated with DC activation and maturation and enhancement of protective immunity induced by a chlamydial antigen. The results indicate that the immunoenhancing activity of VCG for increased T-cell activation against antigens is mediated, at least in part, through DC triggering. Thus, VCGs could be harnessed as immunomodulators to target antigens to DCs for enhancement of protective immunity against microbial infections.
PMCID: PMC4312469  PMID: 25551828
VCG; BMDC; T-cell activation; Chlamydia; Immunity
9.  Early changes of the kinetics of monocyte trem-1 reflect final outcome in human sepsis 
BMC Immunology  2014;15:585.
TREM-1 (triggering receptor expressed on myeloid cells), a receptor expressed on neutrophils and monocytes, is upregulated in sepsis and seems to tune the inflammatory response. We explored the expression of TREM-1 at the gene level and on cell membranes of monocytes and association with clinical outcome.
Peripheral venous blood was sampled from 75 septic patients (39 patients with sepsis, 25 with severe sepsis and 11 with septic shock) on sepsis days 1, 3 and 7. TREM-1 on monocytes was measured by flow cytometry; gene expression of TREM-1 in circulating mononuclear cells was assessed by real-time PCR. sTREM-1 was measured in serum by an enzyme immunoassay.
Although surface TREM-1, sTREM-1 and TREM-1 gene expression did not differ between sepsis, severe sepsis and septic shock on day 1, survivors had greater expression of surface TREM-1 on days 3 and 7 compared to non-survivors. sTREM-1 on non-survivors decreased on day 3 compared to baseline. Patients with increase of monocyte gene expression of TREM-1 from day 1 to day 3 had prolonged survival compared to patients with decrease of gene expression of TREM-1 from day 1 to day 3 (p: 0.031).
Early decrease of gene expression of TREM-1 in monocytes is associated with poor outcome. A reciprocal decrease of the pro-inflammatory surface receptor TREM-1 linked with sepsis-induced immunosuppression may be part of the explanation.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0063-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4335537  PMID: 25532536
Sepsis; Outcome; TREM-1; sTREM-1, Monocytes
10.  Lipid raft-based membrane order is important for antigen-specific clonal expansion of CD4+ T lymphocytes 
BMC Immunology  2014;15(1):58.
Lipid rafts are cholesterol and saturated lipid-rich, nanometer sized membrane domains that are hypothesized to play an important role in compartmentalization and spatiotemporal regulation of cellular signaling. Lipid rafts contribute to the plasma membrane order and to its spatial asymmetry, as well. The raft nanodomains on the surface of CD4+ T lymphocytes coalesce during their interaction with antigen presenting cells (APCs). Sensing of foreign antigen by the antigen receptor on CD4+ T cells occurs during these cell-cell interactions. In response to foreign antigen the CD4+ T cells proliferate, allowing the expansion of few antigen-specific primary CD4+ T cell clones. Proliferating CD4+ T cells specialize in their function by undergoing differentiation into appropriate effectors tailored to mount an effective adaptive immune response against the invading pathogen.
To investigate the role of lipid raft-based membrane order in the clonal expansion phase of primary CD4+ T cells, we have disrupted membrane order by incorporating an oxysterol, 7-ketocholesterol (7-KC), into the plasma membrane of primary CD4+ T cells expressing a T cell receptor specific to chicken ovalbumin323–339 peptide sequence and tested their antigen-specific response. We report that 7-KC, at concentrations that disrupt lipid rafts, significantly diminish the c-Ovalbumin323–339 peptide-specific clonal expansion of primary CD4+ T cells.
Our findings suggest that lipid raft-based membrane order is important for clonal expansion of CD4+ T cells in response to a model peptide.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0058-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4270042  PMID: 25494999
Lipid rafts; Membrane order; CD4+ T cells; Clonal expansion; Cholesterol; 7-ketocholesterol; Fluorescence resonance energy transfer
11.  ImmunoGlobulin galaxy (IGGalaxy) for simple determination and quantitation of immunoglobulin heavy chain rearrangements from NGS 
BMC Immunology  2014;15(1):59.
Sequence analysis of immunoglobulin heavy chain (IGH) gene rearrangements and frequency analysis is a powerful tool for studying the immune repertoire, immune responses and immune dysregulation in health and disease. The challenge is to provide user friendly, secure and reproducible analytical services that are available for both small and large laboratories which are determining VDJ repertoire using NGS technology.
In this study we describe ImmunoGlobulin Galaxy (IGGalaxy)- a convenient web based application for analyzing next-generation sequencing results and reporting IGH gene rearrangements for both repertoire and clonality studies. IGGalaxy has two analysis options one using the built in igBLAST algorithm and the second using output from IMGT; in either case repertoire summaries for the B-cell populations tested are available. IGGalaxy supports multi-sample and multi-replicate input analysis for both igBLAST and IMGT/HIGHV-QUEST. We demonstrate the technical validity of this platform using a standard dataset, S22, used for benchmarking the performance of antibody alignment utilities with a 99.9 % concordance with previous results. Re-analysis of NGS data from our samples of RAG-deficient patients demonstrated the validity and user friendliness of this tool.
IGGalaxy provides clinical researchers with detailed insight into the repertoire of the B-cell population per individual sequenced and between control and pathogenic genomes. IGGalaxy was developed for 454 NGS results but is capable of analyzing alternative NGS data (e.g. Illumina, Ion Torrent). We demonstrate the use of a Galaxy virtual machine to determine the VDJ repertoire for reference data and from B-cells taken from immune deficient patients. IGGalaxy is available as a VM for download and use on a desktop PC or on a server.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0059-7) contains supplementary material, which is available to authorized users.
PMCID: PMC4282729  PMID: 25495099
Next generation sequencing; Immunoglobulin heavy chain; Repertoire; IMGT/HIGHV-QUEST; igBLAST
12.  In silico analysis of autoimmune diseases and genetic relationships to vaccination against infectious diseases 
BMC Immunology  2014;15(1):61.
Near universal administration of vaccines mandates intense pharmacovigilance for vaccine safety and a stringently low tolerance for adverse events. Reports of autoimmune diseases (AID) following vaccination have been challenging to evaluate given the high rates of vaccination, background incidence of autoimmunity, and low incidence and variable times for onset of AID after vaccinations. In order to identify biologically plausible pathways to adverse autoimmune events of vaccine-related AID, we used a systems biology approach to create a matrix of innate and adaptive immune mechanisms active in specific diseases, responses to vaccine antigens, adjuvants, preservatives and stabilizers, for the most common vaccine-associated AID found in the Vaccine Adverse Event Reporting System.
This report focuses on Guillain-Barre Syndrome (GBS), Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Idiopathic (or immune) Thrombocytopenic Purpura (ITP). Multiple curated databases and automated text mining of PubMed literature identified 667 genes associated with RA, 448 with SLE, 49 with ITP and 73 with GBS. While all data sources provided valuable and unique gene associations, text mining using natural language processing (NLP) algorithms provided the most information but required curation to remove incorrect associations. Six genes were associated with all four AIDs. Thirty-three pathways were shared by the four AIDs. Classification of genes into twelve immune system related categories identified more “Th17 T-cell subtype” genes in RA than the other AIDs, and more “Chemokine plus Receptors” genes associated with RA than SLE. Gene networks were visualized and clustered into interconnected modules with specific gene clusters for each AID, including one in RA with ten C-X-C motif chemokines. The intersection of genes associated with GBS, GBS peptide auto-antigens, influenza A infection, and influenza vaccination created a subnetwork of genes that inferred a possible role for the MAPK signaling pathway in influenza vaccine related GBS.
Results showing unique and common gene sets, pathways, immune system categories and functional clusters of genes in four autoimmune diseases suggest it is possible to develop molecular classifications of autoimmune and inflammatory events. Combining this information with cellular and other disease responses should greatly aid in the assessment of potential immune-mediated adverse events following vaccination.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0061-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4266212  PMID: 25486901
13.  Genomic locus on chromosome 1 regulates susceptibility to spontaneous arthritis in mice deficiency of IL-1RA 
BMC Immunology  2014;15(1):57.
To understand the role of genetic factors on chromosome 1 in the regulation of spontaneous arthritis in mice deficient in IL-1 receptor antagonist protein (IL_1RA), we previously used speed congenic breeding to transfer the QTL region from DBA/1−/− mice that are resistant to spontaneous arthritis into BALB/c−/− mice which are susceptible. We were able to establish two congenic strains which exhibited a delayed onset and reduced severity of disease. In this study, we asked a different set of questions. How will the QTL region from BALB/c−/− interact with the rest of the genome in the DBA/1−/− background? Will the DBA/1−/− mice become susceptible to spontaneous arthritis if the QTL genomic region on chromosome 1 was replaced with the genomic fragment of the same region from BALB/c−/−? We conducted the congenic breeding with the similar procedure as that of congenic strains with BALB/c−/− background.
Instead of BALB/c−/−, DBA/1−/− was used as the recurrent parent while BALB/c−/− was used as the donor parent. By the 6th generation we determined that all of the chromosomes in the progeny were of DBA/1−/− origin with the exception of the QTL portion of chromosome 1 which is heterozygous of BALB/c−/− and DBA/1−/− origin. We then intercrossed selected mice to produce homozygous strains containing the homozygous genomic region of BALB/c−/− on chromosome 1, while the rest of genome are homozygous DBA/1−/−. This strain was observed for the development of spontaneous arthritis. Up to 9 weeks of age, both congenic strain and DBA/1−/− did not develop arthritis. However, after 9 weeks, the congenic strain started to exhibit signs of arthritis, while the DBA/1−/− remained free from disease.
The result indicates a strong influence of genetic factor(s) on the QTL of chromosome 1 on the susceptibility to spontaneous arthritis. Identification of genetic factors within this QTL region in the future will significantly enhance our understanding of molecular mechanism of spontaneous arthritis.
PMCID: PMC4272550  PMID: 25488730
Arthritis; Congenic breeding; Mouse; QTL; DBA/1
14.  Human blood monocytes support persistence, but not replication of the intracellular pathogen C. pneumoniae 
BMC Immunology  2014;15(1):60.
Intracellular pathogens have devised various mechanisms to subvert the host immune response in order to survive and replicate in host cells. Here, we studied the infection of human blood monocytes with the intracellular pathogen C. pneumoniae and the effect on cytokine and chemokine profiles in comparison to stimulation with LPS.
Monocytes purified from peripheral blood mononuclear cells by negative depletion were infected with C. pneumoniae. While immunofluorescence confirmed the presence of chlamydial lipopolysaccharide (LPS) in the cytoplasm of infected monocytes, real-time PCR did not provide evidence for replication of the intracellular pathogen. Complementary to PCR, C. pneumoniae infection was confirmed by an oligonucleotide DNA microarray for the detection of intracellular pathogens. Raman microspectroscopy revealed different molecular fingerprints for infected and non-infected monocytes, which were mainly due to changes in lipid and fatty acid content. Stimulation of monocytes with C. pneumoniae or with LPS induced similar profiles of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, but higher levels of IL-1β, IL-12p40 and IL-12p70 for C. pneumoniae which were statistically significant. C. pneumoniae also induced release of the chemokines MCP-1, MIP-1α and MIP-1β, and CXCL-8, which correlated with TNF-α secretion.
Infection of human blood monocytes with intracellular pathogens triggers altered cytokine and chemokine pattern as compared to stimulation with extracellular ligands such as LPS. Complementing conventional methods, an oligonucleotide DNA microarray for the detection of intracellular pathogens as well as Raman microspectroscopy provide useful tools to trace monocyte infection.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0060-1) contains supplementary material, which is available to authorized users.
PMCID: PMC4268907  PMID: 25488836
Intracellular pathogens; Endotoxin; Monocytes; Cytokines; DNA microarray
15.  Orphan nuclear receptor Nur77 Inhibits Oxidized LDL-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells 
BMC Immunology  2014;15(1):54.
Nur77 is an orphan nuclear receptor expressed in human atheroma. In vascular cells in vitro, Nur77 expression is induced by pro-inflammatory factors, such as oxidized LDL (oxLDL).
We analyze the role of Nur77 in the oxLDL-induced differentiation of macrophages into dendritic cells (DC). The murine RAW264.7 macrophage cell line was stably transfected with expression plasmids encoding either GFP or GFP fusions with either full-length Nur77 (GFP-Nur77), Nur77 lacking the DNA binding domain (GFP-Nur77-ΔDBD) or Nur77 lacking the transactivation domain (GFP-Nur77-ΔTAD).
GFP-Nur77 overexpression significantly suppressed the effect of oxLDL treatment on DC morphologic changes, expression of DC maturation markers, endocytic activity, allogeneic activation of T cell proliferation, and the activity and secretion of pro-inflammatory cytokines. Analysis of GFP-Nur77-ΔTAD and GFP-Nur77-ΔDBD indicated that the Nur77 DNA binding and transactivation domains were both required for this effect. GFP-Nur77-ΔDBD consistently had the opposite effect to GFP-Nur77, increasing DC-type differentiation in all assays. Interestingly, GFP-Nur77-ΔDBD protein was cytosolic, whereas GFP-Nur77 and GFP-Nur77-ΔTAD were both nuclear.
These data show that GFP-Nur77 inhibited differentiation of oxLDL-treated macrophages into DC. The effects of Nur77 on the macrophage phenotype may involve changes in its subcellular distribution.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0054-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4274730  PMID: 25471687
Nuclear receptor; Nur77; Oxidized LDL; Macrophage; Dendritic cell
16.  RAGE controls leukocyte adhesion in preterm and term infants 
BMC Immunology  2014;15(1):53.
Insufficient leukocyte recruitment may be one reason for the high incidence of life-threatening infections in preterm infants. Since the receptor of advanced glycation end products (RAGE) is a known leukocyte adhesion molecule and highly expressed during early development, we asked whether RAGE plays a role for leukocyte recruitment in preterm and term infants.
Leukocyte adhesion was analyzed in dynamic flow chamber experiments using isolated leukocytes of cord blood from extremely premature (<30 weeks of gestation), moderately premature (30–35 weeks of gestation) and mature neonates (>35 weeks of gestation) and compared to the results of adults. For fluorescent microscopy leukocytes were labeled with rhodamine 6G. In the respective age groups we also measured the plasma concentration of soluble RAGE (sRAGE) by ELISA and Mac-1 and LFA-1 expression on neutrophils by flow cytometry.
The adhesive functions of fetal leukocytes significantly increase with gestational age. In all age groups, leukocyte adhesion was crucially dependent on RAGE. In particular, RAGE was equally effective to mediate leukocyte adhesion when compared to ICAM-1. The plasma levels of sRAGE were high in extremely premature infants and decreased with increasing gestational age. In contrast, expression of β2-Integrins Mac-1 and LFA-1 which are known ligands for RAGE and ICAM-1 did not change during fetal development.
We conclude that RAGE is a crucial leukocyte adhesion molecule in both preterm and term infants.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0053-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4256735  PMID: 25428166
Fetal; Preterm; Neonate; Neutrophils; Leukocyte adhesion; RAGE; Inflammation
17.  Transcriptional profiling of the spleen in progressive visceral leishmaniasis reveals mixed expression of type 1 and type 2 cytokine-responsive genes 
BMC Immunology  2014;15(1):38.
The Syrian golden hamster (Mesocricetus aureus) has been used as a model to study infections caused by a number of human pathogens. Studies of immunopathogenesis in hamster infection models are challenging because of the limited availability of reagents needed to define cellular and molecular determinants.
We sequenced a hamster cDNA library and developed a first-generation custom cDNA microarray that included 5131 unique cDNAs enriched for immune response genes. We used this microarray to interrogate the hamster spleen response to Leishmania donovani, an intracellular protozoan that causes visceral leishmaniasis. The hamster model of visceral leishmaniasis is of particular interest because it recapitulates clinical and immunopathological features of human disease, including cachexia, massive splenomegaly, pancytopenia, immunosuppression, and ultimately death. In the microarray a differentially expressed transcript was identified as having at least a 2-fold change in expression between uninfected and infected groups and a False Discovery Rate of <5%. Following a relatively silent early phase of infection (at 7 and 14 days post-infection only 8 and 24 genes, respectively, were differentially expressed), there was dramatic upregulation of inflammatory and immune-related genes in the spleen (708 differentially expressed genes were evident at 28 days post-infection). The differentially expressed transcripts included genes involved in inflammation, immunity, and immune cell trafficking. Of particular interest there was concomitant upregulation of the IFN-γ and interleukin (IL)-4 signaling pathways, with increased expression of a battery of IFN-γ- and IL-4-responsive genes. The latter included genes characteristic of alternatively activated macrophages.
Transcriptional profiling was accomplished in the Syrian golden hamster, for which a fully annotated genome is not available. In the hamster model of visceral leishmaniasis, a robust and functional IFN-γ response did not restrain parasite load and progression of disease. This supports the accumulating evidence that macrophages are ineffectively activated to kill the parasite. The concomitant expression of IL-4/IL-13 and their downstream target genes, some of which were characteristic of alternative macrophage activation, are likely to contribute to this. Further dissection of mechanisms that lead to polarization of macrophages toward a permissive state is needed to fully understand the pathogenesis of visceral leishmaniasis.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0038-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4253007  PMID: 25424735
Hamster; Leishmania donovani; Visceral leishmaniasis; Transcriptional profiling; Microarray; Interferon-gamma; Interleukin-4
18.  The discriminative capacity of soluble Toll-like receptor (sTLR)2 and sTLR4 in inflammatory diseases 
BMC Immunology  2014;15(1):55.
The extracellular domains of cytokine receptors are released during inflammation, but little is known about the shedding of Toll-like receptors (TLR) and whether they can be used as diagnostic biomarkers.
The release of sTLR2 and sTLR4 was studied in in-vitro stimulations, as well as in-vivo during experimental human endotoxemia (n = 11, 2 ng/kg LPS), and in plasma of 394 patients with infections (infectious mononucleosis, measles, respiratory tract infections, bacterial sepsis and candidemia) or non-infectious inflammation (Crohn’s disease, gout, rheumatoid arthritis, autoinflammatory syndromes and pancreatitis). Using C-statistics, the value of sTLR2 and sTLR4 levels for discrimination between infections and non-infectious inflammatory diseases, as well as between viral and bacterial infections was analyzed.
In-vitro, peripheral blood mononuclear cells released sTLR2 and sTLR4 by exposure to microbial ligands. During experimental human endotoxemia, plasma concentrations peaked after 2 hours (sTLR4) and 4 hours (sTLR2). sTLR4 did not correlate with cytokines, but sTLR2 correlated positively with TNFα (rs = 0.80, P < 0.05), IL-6 (rs = 0.65, P < 0.05), and IL-1Ra (rs = 0.57, P = 0.06), and negatively with IL-10 (rs = -0.58, P = 0.06), respectively. sTLR4 had a similar area under the ROC curve [AUC] for differentiating infectious and non-infectious inflammation compared to CRP: 0.72 (95% CI 0.66-0.79) versus 0.74 (95% CI 0.69-0.80) [P = 0.80], while sTLR2 had a lower AUC: 0.60 (95% CI 0.54-0.66) [P = 0.0004]. CRP differentiated bacterial infections better from viral infections than sTLR2 and sTLR4: AUC 0.94 (95% CI 0.90-0.96) versus 0.58 (95% CI 0.51-0.64) and 0.75 (95% CI 0.70-0.80), respectively [P < 0.0001 for both].
sTLRs are released into the circulation, and suggest the possibility to use sTLRs as diagnostic tool in inflammatory conditions.
PMCID: PMC4240815  PMID: 25406630
Soluble Toll-like receptor; Biomarkers; Non-infectious inflammation; Experimental human endotoxemia
19.  The change in Ig regulation from children to adults disconnects the correlation with the 3′RR hs1.2 polymorphism 
BMC Immunology  2014;15(1):45.
In the immune system, the serum levels of immunoglobulin (Ig) increase gradually during ageing. Through B cell development, the Ig heavy chain expression is modulated by a regulatory region at the 3’ of the constant alpha gene (3’RR), in single copy in rodents and, due to a large duplication, in two copies in apes. The human 3’RR1 and 3’RR2 are both characterized by three enhancers, the central of which, namely hs1.2, is highly polymorphic. Human hs1.2 has four different variants with unique binding sites for transcription factors (e.g. NF-kB and SP1) and shows variable allelic frequencies in populations with immune disorders. In previous works, we have reported that in several autoimmune diseases the *2 allele of hs1.2 is genetically associated to high level of IgM in peripheral blood. In subjects with altered levels of circulating Ig, an increased level was associated to *2 allele of hs1.2 and low levels corresponded to high frequency of *1 allele.
During ageing there is a physiological increase of Ig concentrations in the serum. Therefore, for this study, we hypothesized that the hs1.2 variants may impact differently the levels of secreted Ig during the growth.
We have correlated the allelic frequencies of hs1.2 with IgM, IgG and IgA serum concentrations in two cohorts of healthy people of different age and after three years follow-up in children homozygous for the allele. Here we show that when the expression levels of Ig in children are low and medium, the frequencies of *1 and *2 alleles are the same. Instead, when the Ig expression levels are high, there is a significantly higher frequency of the allele *2. The follow-up of children homozygous for *1 and *2 alleles showed that the increase or decrease of circulating Ig was not dependent on the number of circulating mature B cells.
These data support the idea that under physiologic condition there is a switch of regulative pathways involved in the maturation of Ig during ageing. This mechanism is evidenced by hs1.2 variants that in children but not in adults participate to Ig production, coordinating the three class levels.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0045-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4234878  PMID: 25391515
Genotyping; B cell markers; Immunoglobulin heavy chain; Enhancer hs1.2; Immune system regulation; NF-κB; SP1; Transcription factor consensus; Aging
20.  Carbon monoxide down-regulates α4β1 integrin-specific ligand binding and cell adhesion: a possible mechanism for cell mobilization 
BMC Immunology  2014;15(1):52.
Carbon monoxide (CO), a byproduct of heme degradation, is attracting growing attention from the scientific community. At physiological concentrations, CO plays a role as a signal messenger that regulates a number of physiological processes. CO releasing molecules are under evaluation in preclinical models for the management of inflammation, sepsis, ischemia/reperfusion injury, and organ transplantation. Because of our discovery that nitric oxide signaling actively down-regulates integrin affinity and cell adhesion, and the similarity between nitric oxide and CO-dependent signaling, we studied the effects of CO on integrin signaling and cell adhesion.
We used a cell permeable CO releasing molecule (CORM-2) to elevate intracellular CO, and a fluorescent Very Late Antigen-4 (VLA-4, α4β1-integrin)-specific ligand to evaluate the integrin state in real-time on live cells. We show that the binding of the ligand can be rapidly down-modulated in resting cells and after inside-out activation through several Gαi-coupled receptors. Moreover, cell treatment with hemin, a natural source of CO, resulted in comparable VLA-4 ligand dissociation. Inhibition of VLA-4 ligand binding by CO had a dramatic effect on cell-cell interaction in a VLA-4/VCAM-1-dependent cell adhesion system.
We conclude that the CO signaling pathway can rapidly down-modulate binding of the VLA-4 -specific ligand. We propose that CO-regulated integrin deactivation provides a basis for modulation of immune cell adhesion as well as rapid cell mobilization, for example as shown for splenic monocytes in response to surgically induced ischemia of the myocardium.
PMCID: PMC4221689  PMID: 25367365
Carbon monoxide; Hemin; Integrin; Affinity; Conformation; Cell adhesion
21.  Multiple factors influence the contribution of individual immunoglobulin light chain genes to the naïve antibody repertoire 
BMC Immunology  2014;15(1):51.
The naïve antibody repertoire is initially dependent upon the number of germline V(D)J genes and the ability of recombined heavy and light chains to pair. Individual VH and VL genes are not equally represented in naïve mature B cells, suggesting that positive and negative selection also shape the antibody repertoire. Among the three member murine Vκ10 L chain family, the Vκ10C gene is under-represented in the antibody repertoire. Although it is structurally functional and accessible to both transcriptional and recombination machinery, the Vκ10C promoter is inefficient in pre-B cell lines and productive Vκ10C rearrangements are lost as development progresses from pre-B cells through mature B cells. This study examined VH/Vκ10 pairing, promoter mutations, Vκ10 transcript levels and receptor editing as possible factors that are responsible for loss of productive Vκ10C rearrangements in developing B cells.
We demonstrate that the loss of Vκ10C expression is not due to an inability to pair with H chains, but is likely due to a combination of other factors. Levels of mRNA are low in sorted pre-B cells and undetectable in B cells. Mutation of a single base in the three prime region of the Vκ10C promoter increases Vκ10C promoter function in pre-B cell lines. Pre-B and B cells harbor disproportionate levels of receptor-edited productive Vκ10C rearrangements.
Our findings suggest that the weak Vκ10C promoter initially limits the amount of available Vκ10C L chain for pairing with H chains, resulting in sub-threshold levels of cell surface B cell receptors, insufficient tonic signaling and subsequent receptor editing to limit the numbers of Vκ10C-expressing B cells emigrating from the bone marrow to the periphery.
PMCID: PMC4216371  PMID: 25359572
B lymphocytes; Antibodies; Generation of diversity; Receptor editing; Rodent; Tonic signaling
22.  Monocytes with angiogenic potential are selectively induced by liver resection and accumulate near the site of liver regeneration 
BMC Immunology  2014;15(1):50.
Monocytes reportedly contribute to liver regeneration. Three subsets have been identified to date: classical, intermediate, non-classical monocytes. The intermediate population and a subtype expressing TIE2 (TEMs) were suggested to promote angiogenesis. In a clinical setting, we investigated which monocyte subsets are regulated after liver resection and correlate with postoperative liver function.
In 38 patients monocyte subsets were evaluated in blood and subhepatic wound fluid by flow cytometry before and 1-3 days after resection of colorectal liver metastases. The monocyte-regulating cytokines macrophage colony stimulating factor (M-CSF), transforming growth factor beta 1 (TGFβ1), and angiopoietin 2 (ANG-2) were measured in patient plasma by ELISA. C-reactive protein (CRP) and liver function parameters were retrieved from routine hospital analyses.
On post-operative day (POD) 1 blood monocytes shifted to significantly elevated levels of intermediate monocytes. In wound fluid, a delayed surge in intermediate monocytes was detected by POD 3. Furthermore, TEMs were highly enriched in wound fluid as compared to circulation. CRP and M-CSF levels were substantially increased in patient blood after surgery and correlated significantly with the frequency of intermediate monocytes. In addition, liver function parameters showed a significant association with intermediate monocyte levels on POD 3.
The reportedly pro-angiogenic subsets of monocytes are selectively increased upon liver resection and accumulate next to the site of liver regeneration. As previously proposed by in vitro experiments, the release of CRP and M-CSF may trigger the induction of intermediate monocytes. The correlation with liver parameters points to a functional involvement of these monocyte populations in liver regeneration which warrants further investigation.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0050-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4223854  PMID: 25359527
Monocytes; Liver resection; M-CSF; Colorectal liver metastases; Liver regeneration
23.  β2 adrenergic agonist attenuates house dust mite-induced allergic airway inflammation through dendritic cells 
BMC Immunology  2014;15(1):39.
Long-acting β2 adrenergic agonists (LABAs) are commonly used combined with inhaled corticosteroids (ICS) to treat asthmatic patients. Previous reports suggest that LABAs have an anti-inflammatory effect in bronchial asthma, and this should be further investigated. The aim of this study was to investigate whether LABAs inhibit allergic airway inflammation and how this occurs.
We assessed the effect of the LABA formoterol (FORM) on inflammatory cell responses in airway, lung and regional lymph nodes, using an HDM-induced murine allergic asthma model in vivo. The effect of FORM on cytokine production from bone marrow derived dendritic cells (BMDCs) stimulated with HDM was evaluated in vitro. Adoptive transfer of BMDCs pulsed with HDM in the presence or absence of FORM to naïve mice was performed and the inflammatory response to subsequent HDM challenge was analyzed. FORM treatment suppressed HDM-induced changes and caused an increase in the number of eosinophils and neutrophils in bronchoalveolar lavage. The concentration of IL-4 and IL-17 in lung tissue homogenate was elevated and led to an accumulation of IL-4, IL-13, IL-5 and IL-17 producing cells in regional lymph nodes. FORM inhibited the production of IL-6 and IL-23 from BMDCs stimulated with HDM in vitro, and enhanced IL-10 production. The BMDCs adoptive transfer experiment indicated that dendritic cells mediate the effect of FORM, since FORM treatment of BMDCs in vitro attenuated airway inflammation.
These results suggested that FORM modulates dendritic cell function and attenuates Th2 and Th17 responses induced by HDM. Thus, we propose that the clinical significance of LABAs should be re-investigated taking into account these immune-modulating effects.
PMCID: PMC4228181  PMID: 25359462
Bronchial asthma; β2 adrenergic agonist; House dust mite; Dendritic cells
24.  Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene 
BMC Immunology  2014;15(1):49.
The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1.
Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection.
These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0049-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4213580  PMID: 25344377
Candida albicans; CD4+ T-cells; Th17; IL-17; IL-22; HIV-1; Transgenic mice
25.  Dichotomy in FcγRIIB deficiency and autoimmune-prone SLAM haplotype clarifies the roles of the Fc receptor in development of autoantibodies and glomerulonephritis 
BMC Immunology  2014;15(1):47.
The significance of a unique inhibitory Fc receptor for IgG, FcγRIIB (RIIB), in the prevention of spontaneous production of autoantibodies remains controversial, due mainly to the fact that the RIIB locus is adjacent to the autoimmune-related SLAM locus harboring the genes coding for signaling lymphocyte activation molecules, making it difficult to isolate the effect of RIIB deletion from that of SLAM in gene-targeted mice. Our objective was to determine the influence of RIIB deletion on the spontaneous development of autoimmune diseases and to compare it with that of potentially pathogenic SLAM.
We established two congenic C57BL/6 (B6) strains, one with the RIIB deletion and the other with SLAM, by backcrossing 129/SvJ-based RIIB-deficient mice into the B6 genetic background extensively. The RIIB deficiency indeed led to the production and/or accumulation of a small amount of anti-nuclear autoantibodies (ANAs) and to weak IgG immune-complex deposition in glomeruli without any obvious manifestation of lupus nephritis. In contrast, pathogenic SLAM in the B6 genetic background induced ANAs but no IgG immune-complex deposition in the kidneys. Naïve SLAM mice but not RIIB-deficient mice exhibited hyperplasia of splenic germinal centers.
The present results clarify the roles of RIIB in preventing production and/or accumulation of a small amount of ANAs, and development of glomerulonephritis. The combined effects of RIIB deletion and pathogenic SLAM can lead to severe lupus nephritis in the B6 genetic background.
Electronic supplementary material
The online version of this article (doi:10.1186/s12865-014-0047-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4209029  PMID: 25339546
Autoimmune disease; Systemic lupus erythematosus; Autoantibody production; B cells; Myeloid cells; Inhibitory receptor

Results 1-25 (623)