Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Probing functional polymorphisms in the dengue vector, Aedes aegypti 
BMC Genomics  2013;14:739.
Dengue is the most prevalent arboviral disease world-wide and its primary vector is the mosquito Aedes aegypti. The current lack of commercially-available vaccines makes control of vector populations the only effective strategy to prevent dengue transmission. Aedes aegypti geographic populations exhibit great variability in insecticide resistance and susceptibility to dengue infection. The characterization of single nucleotide polymorphisms (SNPs) as molecular markers to study quantitatively this variation is needed greatly because this species has a low abundance of microsatellite markers and limited known restriction fragments length polymorphisms (RFLPs) and single-strand conformation polymorphism (SSCP) markers.
We used RNA-seq to characterize SNPs in three Ae. aegypti strains, including the Liverpool (LVP) strain, from which the current genome annotation is derived. We identified 131,764 unique genome locations with at least one alternative nucleotide to what is reported in the reference annotation. These comprised changes in both open-reading frames (ORFs) and untranslated regions (UTRs) of transcripts. An in depth-look at sequence variation in immunity genes revealed that those associated with autophagy, MD2-like receptors and Peptidoglycan Recognition Proteins had more sequence variation in their 3’UTRs than mutations associated with non-synonymous changes. This supports the conclusion that these genes had maintained their functional specificity while being adapted to different regulatory domains. In contrast, a number of peroxidases, serpins and Clip-domain serine proteases exhibited conservation of putative UTR regulatory sequences while displaying diversification of the ORFs. Transcriptome evidence also was found for ~2500 novel transcriptional units (NTUs) not annotated in the reference genome.
The transcriptome-wide assessment of within and inter-strain polymorphisms in Ae. aegypti adds considerably to the number of molecular markers available for genetic studies in this mosquito. Additionally, data supporting NTU discovery emphasizes the need for continuous amendments of the reference genome annotation.
PMCID: PMC4007706  PMID: 24168143
Mosquito; Variation; RNA-seq; SNP; Immunity
2.  RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti 
BMC Genomics  2011;12:82.
Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae), a vector of Dengue viruses, Yellow Fever Virus (YFV) and Chikungunya virus (CV), is the subject of this study to look at genome-wide changes in gene expression following a blood meal.
Transcriptional changes that follow a blood meal in Ae. aegypti females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the Ae. aegypti reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. Cis-regulatory elements (CRE) and cis-regulatory modules (CRM) enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified.
This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in Ae. aegypti females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission-blocking strategies including those in which the vectors are modified genetically to express anti-pathogen effector molecules.
PMCID: PMC3042412  PMID: 21276245
3.  The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy 
BMC Genomics  2009;10:57.
Mosquito saliva, consisting of a mixture of dozens of proteins affecting vertebrate hemostasis and having sugar digestive and antimicrobial properties, helps both blood and sugar meal feeding. Culicine and anopheline mosquitoes diverged ~150 MYA, and within the anophelines, the New World species diverged from those of the Old World ~95 MYA. While the sialotranscriptome (from the Greek sialo, saliva) of several species of the Cellia subgenus of Anopheles has been described thoroughly, no detailed analysis of any New World anopheline has been done to date. Here we present and analyze data from a comprehensive salivary gland (SG) transcriptome of the neotropical malaria vector Anopheles darlingi (subgenus Nyssorhynchus).
A total of 2,371 clones randomly selected from an adult female An. darlingi SG cDNA library were sequenced and used to assemble a database that yielded 966 clusters of related sequences, 739 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 183 protein sequences, 114 of which code for putative secreted proteins.
Comparative analysis of sialotranscriptomes of An. darlingi and An. gambiae reveals significant divergence of salivary proteins. On average, salivary proteins are only 53% identical, while housekeeping proteins are 86% identical between the two species. Furthermore, An. darlingi proteins were found that match culicine but not anopheline proteins, indicating loss or rapid evolution of these proteins in the old world Cellia subgenus. On the other hand, several well represented salivary protein families in old world anophelines are not expressed in An. darlingi.
PMCID: PMC2644710  PMID: 19178717
4.  angaGEDUCI: Anopheles gambiae gene expression database with integrated comparative algorithms for identifying conserved DNA motifs in promoter sequences 
BMC Genomics  2006;7:116.
The completed sequence of the Anopheles gambiae genome has enabled genome-wide analyses of gene expression and regulation in this principal vector of human malaria. These investigations have created a demand for efficient methods of cataloguing and analyzing the large quantities of data that have been produced. The organization of genome-wide data into one unified database makes possible the efficient identification of spatial and temporal patterns of gene expression, and by pairing these findings with comparative algorithms, may offer a tool to gain insight into the molecular mechanisms that regulate these expression patterns.
We provide a publicly-accessible database and integrated data-mining tool, angaGEDUCI, that unifies 1) stage- and tissue-specific microarray analyses of gene expression in An. gambiae at different developmental stages and temporal separations following a bloodmeal, 2) functional gene annotation, 3) genomic sequence data, and 4) promoter sequence comparison algorithms. The database can be used to study genes expressed in particular stages, tissues, and patterns of interest, and to identify conserved promoter sequence motifs that may play a role in the regulation of such expression. The database is accessible from the address .
By combining gene expression, function, and sequence data with integrated sequence comparison algorithms, angaGEDUCI streamlines spatial and temporal pattern-finding and produces a straightforward means of developing predictions and designing experiments to assess how gene expression may be controlled at the molecular level.
PMCID: PMC1524951  PMID: 16707020

Results 1-4 (4)