Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)
Year of Publication
Document Types
1.  Genome-wide microarray analysis of Atlantic cod (Gadus morhua) oocyte and embryo 
BMC Genomics  2014;15(1):594.
Regulation of gene expression plays a central role in embryonic development. Early stages are controlled by gametic transcripts, which are subsequently substituted with transcripts from the genome of the zygote. Transcriptomic analyses provide an efficient approach to explore the temporal gene expression profiles in embryos and to search for the developmental regulators. We report a study of early Atlantic cod development that used a genome-wide oligonucleotide microarray to examine the composition and putative roles of polyadenylated transcripts.
The analyses were carried out in unfertilized oocytes, newly fertilized oocytes and embryos at the stages of mid-blastula transition and segmentation. Numerous genes transcribed in oocytes are involved in multiple aspects of cell maintenance and protection, including metabolism, signal perception and transduction, RNA processing, cell cycle, defense against pathogens and DNA damage. Transcripts found in unfertilized oocytes also encoded a large number of proteins implicated in cell adherence, tight junction and focal adhesion, suggesting high complexity in terms of structure and cellular interactions in embryos prior to midblastula transition (MBT). Prezygotic transcripts included multiple regulators that are most likely involved in developmental processes that take place long after fertilization, such as components of ErbB, hedgehog, notch, retinoid, TGFb, VEGF and Wnt signaling pathways, as well as transcripts involved in the development of nervous system. The major event of MBT was the activation of a large group of histones and other genes that modify chromatin structure preceding massive gene expression changes. A hallmark of events observed during segmentation was the induction of multiple transcription factors, including a large group of homeobox proteins in pace with decay of a large fraction of maternal transcripts. Microarray analyses detected a suite of master developmental regulators that control differentiation and maintenance of diverse cell lineages.
Transcriptome profiling of the early stages in Atlantic cod revealed the presence of transcripts involved in patterning and development of tissues and organs long before activation of the zygotic genome. The switch from maternal to zygotic developmental programs is associated with large-scale modification of chromosomes.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-594) contains supplementary material, which is available to authorized users.
PMCID: PMC4124161  PMID: 25023375
Atlantic cod; Oocyte; Embryo; Development; Microarray
2.  Effects of functional feeds on the lipid composition, transcriptomic responses and pathology in heart of Atlantic salmon (Salmo salar L.) before and after experimental challenge with Piscine Myocarditis Virus (PMCV) 
BMC Genomics  2014;15(1):462.
Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV.
Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions.
Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-462) contains supplementary material, which is available to authorized users.
PMCID: PMC4079957  PMID: 24919788
3.  Comparison of Atlantic salmon individuals with different outcomes of cardiomyopathy syndrome (CMS) 
BMC Genomics  2012;13:205.
Cardiomyopathy syndrome (CMS) is a severe disease of Atlantic salmon (Salmo salar L.) associated with significant economic losses in the aquaculture industry. CMS is diagnosed with a severe inflammation and degradation of myocardial tissue caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV), with structural similarities to the Totiviridae family. In the present study we characterized individual host responses and genomic determinants of different disease outcomes.
From time course studies of experimentally infected Atlantic salmon post-smolts, fish exhibited different outcomes of infection and disease. High responder (HR) fish were characterized with sustained and increased viral load and pathology in heart tissue. Low responder (LR) fish showed declining viral load from 6–10 weeks post infection (wpi) and absence of pathology. Global gene expression (SIQ2.0 oligonucleotide microarray) in HR and LR hearts during infection was compared, in order to characterize differences in the host response and to identify genes with expression patterns that could explain or predict the different outcomes of disease. Virus-responsive genes involved in early antiviral and innate immune responses were upregulated equally in LR and HR at the first stage (2–4 wpi), reflecting the initial increase in virus replication. Repression of heart muscle development was identified by gene ontology enrichment analyses, indicating the early onset of pathology. By six weeks both responder groups had comparable viral load, while increased pathology was observed in HR fish. This was reflected by induced expression of genes implicated in apoptosis and cell death mechanisms, presumably related to lymphocyte regulation and survival. In contrast, LR fish showed earlier activation of NK cell-mediated cytotoxicity and NOD-like receptor signaling pathways. At the late stage of infection, increased pathology and viral load in HR was accompanied by a broad activation of genes involved in adaptive immunity and particularly T cell responses, probably reflecting the increased infiltration and homing of virus-specific T cells to the infected heart. This was in sharp contrast to LR fish, where recovery and reduced viral load was associated with a significantly reduced transcription of adaptive immunity genes and activation of genes involved in energy metabolism.
In contrast to LR, a stronger and sustained expression of genes involved in adaptive immune responses in heart tissue of HR at the late stage of disease probably reflected the increased lymphocyte infiltration and pathological outcome. In addition to controlled adaptive immunity and activation of genes involved in cardiac energy metabolism in LR at the late stage, recovery of this group could also be related to an earlier activation of NOD-like receptor signaling and NK cell-mediated cytotoxicity pathways.
PMCID: PMC3443006  PMID: 22646522
4.  Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination 
BMC Genomics  2012;13:130.
The salmon louse is an ectoparasitic copepod that causes major economic losses in the aquaculture industry of Atlantic salmon. This host displays a high level of susceptibility to lice which can be accounted for by several factors including stress. In addition, the parasite itself acts as a potent stressor of the host, and outcomes of infection can depend on biotic and abiotic factors that stimulate production of cortisol. Consequently, examination of responses to infection with this parasite, in addition to stress hormone regulation in Atlantic salmon, is vital for better understanding of the host pathogen interaction.
Atlantic salmon post smolts were organised into four experimental groups: lice + cortisol, lice + placebo, no lice + cortisol, no lice + placebo. Infection levels were equal in both treatments upon termination of the experiment. Gene expression changes in skin were assessed with 21 k oligonucleotide microarray and qPCR at the chalimus stage 18 days post infection at 9°C. The transcriptomic effects of hormone treatment were significantly greater than lice-infection induced changes. Cortisol stimulated expression of genes involved in metabolism of steroids and amino acids, chaperones, responses to oxidative stress and eicosanoid metabolism and suppressed genes related to antigen presentation, B and T cells, antiviral and inflammatory responses. Cortisol and lice equally down-regulated a large panel of motor proteins that can be important for wound contraction. Cortisol also suppressed multiple genes involved in wound healing, parts of which were activated by the parasite. Down-regulation of collagens and other structural proteins was in parallel with the induction of proteinases that degrade extracellular matrix (MMP9 and MMP13). Cortisol reduced expression of genes encoding proteins involved in formation of various tissue structures, regulators of cell differentiation and growth factors.
These results suggest that cortisol-induced stress does not affect the level of infection of Atlantic salmon with the parasite, however, it may retard repair of skin. The cortisol induced changes are in close concordance with the existing concept of wound healing cascade.
PMCID: PMC3338085  PMID: 22480234
5.  Transcriptome profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon 
BMC Genomics  2011;12:459.
Cardiomyopathy syndrome (CMS) is a disease associated with severe myocarditis primarily in adult farmed Atlantic salmon (Salmo salar L.), caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV) with structural similarities to the Totiviridae family. Here we present the first characterisation of host immune responses to CMS assessed by microarray transcriptome profiling.
Unvaccinated farmed Atlantic salmon post-smolts were infected by intraperitoneal injection of PMCV and developed cardiac pathology consistent with CMS. From analysis of heart samples at several time points and different tissues at early and clinical stages by oligonucleotide microarrays (SIQ2.0 chip), six gene sets representing a broad range of immune responses were identified, showing significant temporal and spatial regulation. Histopathological examination of cardiac tissue showed myocardial lesions from 6 weeks post infection (wpi) that peaked at 8-9 wpi and was followed by a recovery. Viral RNA was detected in all organs from 4 wpi suggesting a broad tissue tropism. High correlation between viral load and cardiac histopathology score suggested that cytopathic effect of infection was a major determinant of the myocardial changes. Strong and systemic induction of antiviral and IFN-dependent genes from 2 wpi that levelled off during infection, was followed by a biphasic activation of pathways for B cells and MHC antigen presentation, both peaking at clinical pathology. This was preceded by a distinct cardiac activation of complement at 6 wpi, suggesting a complement-dependent activation of humoral Ab-responses. Peak of cardiac pathology and viral load coincided with cardiac-specific upregulation of T cell response genes and splenic induction of complement genes. Preceding the reduction in viral load and pathology, these responses were probably important for viral clearance and recovery.
By comparative analysis of gene expression, histology and viral load, the temporal and spatial regulation of immune responses were characterised and novel immune genes identified, ultimately leading to a more complete understanding of host-virus responses and pathology and protection in Atlantic salmon during CMS.
PMCID: PMC3196748  PMID: 21943289
6.  Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition 
BMC Genomics  2011;12:141.
The salmon louse (Lepeophtheirus salmonis Krøyer), an ectoparasitic copepod with a complex life cycle causes significant losses in salmon aquaculture. Pesticide treatments against the parasite raise environmental concerns and their efficacy is gradually decreasing. Improvement of fish resistance to lice, through biological control methods, needs better understanding of the protective mechanisms. We used a 21 k oligonucleotide microarray and RT-qPCR to examine the time-course of immune gene expression changes in salmon skin, spleen, and head kidney during the first 15 days after challenge, which encompassed the copepod and chalimus stages of lice development.
Large scale and highly complex transcriptome responses were found already one day after infection (dpi). Many genes showed bi-phasic expression profiles with abrupt changes between 5 and 10 dpi (the copepod-chalimus transitions); the greatest fluctuations (up- and down-regulation) were seen in a large group of secretory splenic proteases with unknown roles. Rapid sensing was witnessed with induction of genes involved in innate immunity including lectins and enzymes of eicosanoid metabolism in skin and acute phase proteins in spleen. Transient (1-5 dpi) increase of T-cell receptor alpha, CD4-1, and possible regulators of lymphocyte differentiation suggested recruitment of T-cells of unidentified lineage to the skin. After 5 dpi the magnitude of transcriptomic responses decreased markedly in skin. Up-regulation of matrix metalloproteinases in all studied organs suggested establishment of a chronic inflammatory status. Up-regulation of putative lymphocyte G0/G1 switch proteins in spleen at 5 dpi, immunoglobulins at 15 dpi; and increase of IgM and IgT transcripts in skin indicated an onset of adaptive humoral immune responses, whereas MHCI appeared to be down-regulated.
Atlantic salmon develops rapid local and systemic reactions to L. salmonis, which, however, do not result in substantial level of protection. The dramatic changes observed after 5 dpi can be associated with metamorphosis of copepod, immune modulation by the parasite, or transition from innate to adaptive immune responses.
PMCID: PMC3062619  PMID: 21385383
7.  Gene expression profiles in Atlantic salmon adipose-derived stromo-vascular fraction during differentiation into adipocytes 
BMC Genomics  2010;11:39.
Excessive fat deposition is one of the largest problems faced by salmon aquaculture industries, leading to production losses due to high volume of adipose tissue offal. In addition, increased lipid accumulation may impose considerable stress on adipocytes leading to adipocyte activation and production and secretion of inflammatory mediators, as observed in mammals.
Microarray and qPCR analyses were performed to follow transcriptome changes during adipogenesis in the primary culture of adipose stromo-vascular fraction (aSVF) of Atlantic salmon. Cellular heterogeneity decreased by confluence as evidenced by the down-regulation of markers of osteo/chondrogenic, myogenic, immune and vasculature lineages. Transgelin (TAGLN), a marker of the multipotent pericyte, was prominently expressed around confluence while adipogenic PPARγ was up-regulated already in subconfluent cells. Proliferative activity and subsequent cell cycle arrest were reflected in the fluctuations of pro- and anti-mitotic regulators. Marked regulation of genes involved in lipid and glucose metabolism and pathways producing NADPH and glycerol-3-phosphate (G3P) was seen during the terminal differentiation, also characterised by diverse stress responses. Activation of the glutathione and thioredoxin antioxidant systems and changes in the iron metabolism suggested the need for protection against oxidative stress. Signs of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) occured in parallel with the increased lipid droplet (LD) formation and production of secretory proteins (adipsin, visfatin). The UPR markers XBP1 and ATF6 were induced together with genes involved in ubiquitin-proteasome and lysosomal proteolysis. Concurrently, translation was suppressed as evidenced by the down-regulation of genes encoding elongation factors and components of the ribosomal machinery. Notably, expression changes of a panel of genes that belong to different immune pathways were seen throughout adipogenesis. The induction of AP1 (Jun, Fos), which is a master regulator of stress responses, culminated by the end of adipogenesis, concurrent with the maximal observed lipid deposition.
Our data point to an intimate relationship between metabolic regulation and immune responses in white adipocytes of a cold-blooded vertebrate. Stress imposed on adipocytes by LD formation and expansion is prominently reflected in the ER compartment and the activated UPR response could have an important role at visceral obesity in fish.
PMCID: PMC2824722  PMID: 20078893
8.  Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis 
BMC Genomics  2009;10:503.
Furunculosis, a disease caused with gram negative bacteria Aeromonas salmonicida produces heavy losses in aquaculture. Vaccination against furunculosis reduces mortality of Atlantic salmon but fails to eradicate infection. Factors that determine high individual variation of vaccination efficiency remain unknown. We used gene expression analyses to search for the correlates of vaccine protection against furunculosis in Atlantic salmon.
Naïve and vaccinated fish were challenged by co-habitance. Fish with symptoms of furunculosis at the onset of mass mortality (LR - low resistance) and survivors (HR - high resistance) were sampled. Hepatic gene expression was analyzed with microarray (SFA2.0 - immunochip) and real-time qPCR. Comparison of LR and HR indicated changes associated with the protection and results obtained with naïve fish were used to find and filter the vaccine-independent responses. Genes involved in recruitment and migration of immune cells changed expression in both directions with greater magnitude in LR. Induction of the regulators of immune responses was either equal (NFkB) or greater (Jun) in LR. Expression levels of proteasome components and extracellular proteases were higher in LR while protease inhibitors were up-regulated in HR. Differences in chaperones and protein adaptors, scavengers of reactive oxygen species and genes for proteins of iron metabolism suggested cellular and oxidative stress in LR. Reduced levels of free iron and heme can be predicted in LR by gene expression profiles with no protection against pathogen. The level of complement regulation was greater in HR, which showed up-regulation of the components of membrane attack complex and the complement proteins that protect the host against the auto-immune damages. HR fish was also characterized with up-regulation of genes for proteins involved in the protection of extracellular matrix, lipid metabolism and clearance of endogenous and exogenous toxic compounds. A number of genes with marked expression difference between HR and LR can be considered as positive and negative correlates of vaccine protection against furunculosis.
Efficiency of vaccination against furunculosis depends largely on the ability of host to neutralize the negative impacts of immune responses combined with efficient clearance and prevention of tissue damages.
PMCID: PMC2775754  PMID: 19878563
9.  Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis) 
BMC Genomics  2008;9:498.
The salmon louse (SL) is an ectoparasitic caligid crustacean infecting salmonid fishes in the marine environment. SL represents one of the major challenges for farming of salmonids, and veterinary intervention is necessary to combat infection. This study addressed gene expression responses of Atlantic salmon infected with SL, which may account for its high susceptibility.
The effects of SL infection on gene expression in Atlantic salmon were studied throughout the infection period from copepodids at 3 days post infection (dpi) to adult lice (33 dpi). Gene expression was analyzed at three developmental stages in damaged and intact skin, spleen, head kidney and liver, using real-time qPCR and a salmonid cDNA microarray (SFA2). Rapid detection of parasites was indicated by the up-regulation of immunoglobulins in the spleen and head kidney and IL-1 receptor type 1, CD4, beta-2-microglobulin, IL-12β, CD8α and arginase 1 in the intact skin of infected fish. Most immune responses decreased at 22 dpi, however, a second activation was observed at 33 dpi. The observed pattern of gene expression in damaged skin suggested the development of inflammation with signs of Th2-like responses. Involvement of T cells in responses to SL was witnessed with up-regulation of CD4, CD8α and programmed death ligand 1. Signs of hyporesponsive immune cells were seen. Cellular stress was prevalent in damaged skin as seen by highly significant up-regulation of heat shock proteins, other chaperones and mitochondrial proteins. Induction of the major components of extracellular matrix, TGF-β and IL-10 was observed only at the adult stage of SL. Taken together with up-regulation of matrix metalloproteinases (MMP), this classifies the wounds afflicted by SL as chronic. Overall, the gene expression changes suggest a combination of chronic stress, impaired healing and immunomodulation. Steady increase of MMP expression in all tissues except liver was a remarkable feature of SL infected fish.
SL infection in Atlantic salmon is associated with a rapid induction of mixed inflammatory responses, followed by a period of hyporesponsiveness and delayed healing of injuries. Persistent infection may lead to compromised host immunity and tissue self-destruction.
PMCID: PMC2582245  PMID: 18945374
10.  Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality 
BMC Genomics  2008;9:179.
Infectious salmon anemia virus (ISAV) causes a multisystemic disease responsible for severe losses in salmon aquaculture. Better understanding of factors that explain variations in resistance between individuals and families is essential for development of strategies for disease control. To approach this, we compared global gene expression using microarrays in fish dying early and late in the time course following infection from a highly pathogenic ISAV.
Tissues (gill, heart, liver and spleen) from infected Atlantic salmon (cohabitation, ISAV Glesvaer 2/90 isolate) were collected from three stages over the time course of the experiment; early (EM, 0–10% cumulative mortality (CM), 21–25 days post-infection (DPI)), intermediate (IM, 35–55% CM, 28–31 DPI) and late (LM, 75–85% CM, 37–48 DPI) mortality. Viral loads were equal in EM and IM but dropped markedly in LM fish. Gene expression analyses using a 1.8 K salmonid fish cDNA microarray (SFA2.0) and real-time qPCR revealed a large group of genes highly up-regulated across tissues in EM, which were mainly implicated in innate antiviral responses and cellular stress. Despite equal levels of MHC class I in EM and LM, increase of splenic and cardiac expression of immunoglobulin-like genes was found only in LM while a suite of adaptive immunity markers were activated already in IM. The hepatic responses to ISAV were characterized by difference between EM and LM in expression of chaperones and genes involved in eicosanoid metabolism. To develop classification of high and low resistance phenotypes based on a small number of genes, we processed results from qPCR analyses of liver using a linear discriminant analysis. Four genes (5-lipoxygenase activating protein, cytochrome P450 2K4-1, galectin-9 and annexin A1) were sufficient for correct assignment of individuals to EM, LM and uninfected groups, while IM was inseparable from EM. Three of four prognostic markers are involved in metabolism of inflammatory regulators.
This study adds to the understanding of molecular determinants for resistance to acute ISAV infection. The most susceptible individuals were characterized by high viral replication and dramatic activation of innate immune responses, which did not provide protection. The ability to endure high levels of infection for sustained periods could be associated with lower inflammatory responses while subsequent protection and viral clearance was most likely conferred by activation of adaptive immunity.
PMCID: PMC2387173  PMID: 18423000
11.  Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation 
BMC Genomics  2008;9:141.
The response of the trout, O. mykiss, head kidney to bacterial lipopolysaccharide (LPS) or active and attenuated infectious hematopoietic necrosis virus (IHNV and attINHV respectively) intraperitoneal challenge, 24 and 72 hours post-injection, was investigated using a salmonid-specific cDNA microarray.
The head kidney response to i.p. LPS-induced inflammation in the first instance displays an initial stress reaction involving suppression of major cellular processes, including immune function, followed by a proliferative hematopoietic-type/biogenesis response 3 days after administration. The viral response at the early stage of infection highlights a suppression of hematopoietic and protein biosynthetic function and a stimulation of immune response. In fish infected with IHNV a loss of cellular function including signal transduction, cell cycle and transcriptional activity 72 hours after infection reflects the tissue-specific pathology of IHNV infection. attIHNV treatment on the other hand shows a similar pattern to native IHNV infection at 24 hours however at 72 hours a divergence from the viral response is seen and replace with a recovery response more similar to that observed for LPS is observed.
In conclusion we have been able to identify and characterise by transcriptomic analysis two different types of responses to two distinct immune agents, a virus, IHNV and a bacterial cell wall component, LPS and a 'mixed' response to an attenuated IHNV. This type of analysis will lead to a greater understanding of the physiological response and the development of effective immune responses in salmonid fish to different pathogenic and pro-inflammatory agents.
PMCID: PMC2291046  PMID: 18366750
12.  Developmental disturbances in early life stage mortality (M74) of Baltic salmon fry as studied by changes in gene expression 
BMC Genomics  2006;7:56.
We have studied alterations of gene expression associated with naturally-occurring early life stage mortality (M74) in Baltic salmon using a cDNA microarray and real time PCR. M74-affected fry have several typical neurological, cardiovascular and pathological symptoms. They are also characterized by low thiamine content and show signs of oxidative stress.
Affected fry can be divided into three major groups with early, intermediate or late onset of mortality. If mortality starts during the first third of the yolk-sac stage, virtually all the responses are compatible with stress, which rapidly leads to the common terminal responses. If death occurs during the second third of the yolk sac stage, the terminal stage is preceded by a decrease in globin gene expression, which leads to internal hypoxia when the animals grow and shift from skin- to gill-breathing. Fry will eventually proceed to the terminal responses. The group developing M74 most slowly appears to compensate for reduced oxygen delivery by downregulation of metabolism, and hence some fry can escape death.
Our study is the first demonstration of diverse transcriptional responses to a naturally-occurring developmental disturbance. Since many of the genes differentially expressed in M74-fry are evolutionarily conserved, the M74 of Baltic salmon can serve as a model for developmental disturbances and environmental stress responses in vertebrates in general.
PMCID: PMC1435884  PMID: 16545121
13.  Transcribed Tc1-like transposons in salmonid fish 
BMC Genomics  2005;6:107.
Mobile genetic elements comprise a substantial fraction of vertebrate genomes. These genes are considered to be deleterious, and in vertebrates they are usually inactive. High throughput sequencing of salmonid fish cDNA libraries has revealed a large number of transposons, which remain transcribed despite inactivation of translation. This article reports on the structure and potential role of these genes.
A search of EST showed the ratio of transcribed transposons in salmonid fish (i.e., 0.5% of all unique cDNA sequences) to be 2.4–32 times greater than in other vertebrate species, and 68% of these genes belonged to the Tc1-family of DNA transposons. A phylogenetic analysis of reading frames indicate repeated transposition of distantly related genes into the fish genome over protracted intervals of evolutionary time. Several copies of two new DNA transposons were cloned. These copies showed relatively little divergence (11.4% and 1.9%). The latter gene was transcribed at a high level in rainbow trout tissues, and was present in genomes of many phylogenetically remote fish species. A comparison of synonymous and non-synonymous divergence revealed remnants of divergent evolution in the younger gene, while the older gene evolved in a neutral mode. From a 1.2 MB fragment of genomic DNA, the salmonid genome contains approximately 105 Tc1-like sequences, the major fraction of which is not transcribed. Our microarray studies showed that transcription of rainbow trout transposons is activated by external stimuli, such as toxicity, stress and bacterial antigens. The expression profiles of Tc1-like transposons gave a strong correlation (r2 = 0.63–0.88) with a group of genes implicated in defense response, signal transduction and regulation of transcription.
Salmonid genomes contain a large quantity of transcribed mobile genetic elements. Divergent or neutral evolution within genomes and lateral transmission can account for the diversity and sustained persistence of Tc1-like transposons in lower vertebrates. A small part of transposons remain transcribed and their transcription is enhanced by responses to acute conditions.
PMCID: PMC1192797  PMID: 16095544
14.  Gene expression in the brain and kidney of rainbow trout in response to handling stress 
BMC Genomics  2005;6:3.
Microarray technologies are rapidly becoming available for new species including teleost fishes. We constructed a rainbow trout cDNA microarray targeted at the identification of genes which are differentially expressed in response to environmental stressors. This platform included clones from normalized and subtracted libraries and genes selected through functional annotation. Present study focused on time-course comparisons of stress responses in the brain and kidney and the identification of a set of genes which are diagnostic for stress response.
Fish were stressed with handling and samples were collected 1, 3 and 5 days after the first exposure. Gene expression profiles were analysed in terms of Gene Ontology categories. Stress affected different functional groups of genes in the tissues studied. Mitochondria, extracellular matrix and endopeptidases (especially collagenases) were the major targets in kidney. Stress response in brain was characterized with dramatic temporal alterations. Metal ion binding proteins, glycolytic enzymes and motor proteins were induced transiently, whereas expression of genes involved in stress and immune response, cell proliferation and growth, signal transduction and apoptosis, protein biosynthesis and folding changed in a reciprocal fashion. Despite dramatic difference between tissues and time-points, we were able to identify a group of 48 genes that showed strong correlation of expression profiles (Pearson r > |0.65|) in 35 microarray experiments being regulated by stress. We evaluated performance of the clone sets used for preparation of microarray. Overall, the number of differentially expressed genes was markedly higher in EST than in genes selected through Gene Ontology annotations, however 63% of stress-responsive genes were from this group.
1. Stress responses in fish brain and kidney are different in function and time-course. 2. Identification of stress-regulated genes provides the possibility for measuring stress responses in various conditions and further search for the functionally related genes.
PMCID: PMC545953  PMID: 15634361

Results 1-14 (14)