PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None
Journals
Year of Publication
more »
Document Types
4.  Erratum to: inferring the global structure of chromosomes from structural variations 
BMC Genomics  2015;16(1):276.
doi:10.1186/s12864-015-1338-2
PMCID: PMC4391112  PMID: 25884914
6.  Erratum to: genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity 
BMC Genomics  2014;15(1):1184.
Background
The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.
Results
Whole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.
Conclusions
This analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.
doi:10.1186/1471-2164-15-1184
PMCID: PMC4464726  PMID: 25547158
Bacteriophage; Phage; Cluster; Bacillus
9.  Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi 
BMC Genomics  2014;15:6.
Abstract
The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused.
Background
Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported.
Results
In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family.
Conclusions
Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity.
doi:10.1186/1471-2164-15-6
PMCID: PMC3893384  PMID: 24422981
Fungi; CAZymes; Glycoside hydrolase; Polysaccharide lyase; Carbohydrate esterase; Pectinase; Cutinase; Lignocellulase
13.  Correction: Unraveling overlapping deletions by agglomerative clustering 
BMC Genomics  2013;14(Suppl 1):S16.
doi:10.1186/1471-2164-14-S1-S16
PMCID: PMC3599823
15.  Identification and analysis of the germin-like gene family in soybean 
BMC Genomics  2011;12:16.
In line 12 of page 1, replace "GmGER 9" with "GmGER 15".
doi:10.1186/1471-2164-12-16
PMCID: PMC3023749
18.  Correction: High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera 
BMC Genomics  2010;11:109.
The version of this article published in BMC Genomics 2009, 10:558, contains data in Table 1 which are now known to be unreliable, and an illustration, in Figure 1, of unusual miRNA processing events predicted by these unreliable data. In this full-length correction, new data replace those found to be unreliable, leading to a more straightforward interpretation without altering the principle conclusions of the study. Table 1 and associated methods have been corrected, Figure 1 deleted, supplementary file 1 added, and modifications made to the sections "Deep sequencing of small RNAs from grapevine leaf tissue" and "Microarray analysis of miRNA expression". The editors and authors regret the inconvenience caused to readers by premature publication of the original paper.
Background
MicroRNAs are short (~21 base) single stranded RNAs that, in plants, are generally coded by specific genes and cleaved specifically from hairpin precursors. MicroRNAs are critical for the regulation of multiple developmental, stress related and other physiological processes in plants. The recent annotation of the genome of the grapevine (Vitis vinifera L.) allowed the identification of many putative conserved microRNA precursors, grouped into multiple gene families.
Results
Here we use oligonucleotide arrays to provide the first indication that many of these microRNAs show differential expression patterns between tissues and during the maturation of fruit in the grapevine. Furthermore we demonstrate that whole transcriptome sequencing and deep-sequencing of small RNA fractions can be used both to identify which microRNA precursors are expressed in different tissues and to estimate genomic coordinates and patterns of splicing and alternative splicing for many primary miRNA transcripts.
Conclusions
Our results show that many microRNAs are differentially expressed in different tissues and during fruit maturation in the grapevine. Furthermore, the demonstration that whole transcriptome sequencing can be used to identify candidate splicing events and approximate primary microRNA transcript coordinates represents a significant step towards the large-scale elucidation of mechanisms regulating the expression of microRNAs at the transcriptional and post-transcriptional levels.
doi:10.1186/1471-2164-11-109
PMCID: PMC2831844  PMID: 20152027
21.  The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns 
BMC Genomics  2009;10:230.
Correction to Dolan J, Walshe K, Alsbury S, Hokamp K, O'Keeffe S, Okafuji T, Miller SF, Tear G, Mitchell KJ: The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics 2007, 8:320.
doi:10.1186/1471-2164-10-230
PMCID: PMC2689278
22.  Gene expression and isoform variation analysis using Affymetrix exon arrays 
BMC Genomics  2009;10:121.
Correction to Bemmo A, Benovoy D, Kwan T, Gaffney DJ, Jensen RV, Majewski J: Gene expression and isoform variation analysis using Affymetrix Exon Arrays. BMC Genomics 2008, 9: 529.
doi:10.1186/1471-2164-10-121
PMCID: PMC2666767

Results 1-25 (31)