Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Non-Invasive markers for hepatic fibrosis 
BMC Gastroenterology  2011;11:91.
With great advancements in the therapeutic modalities used for the treatment of chronic liver diseases, the accurate assessment of liver fibrosis is a vital need for successful individualized management of disease activity in patients. The lack of accurate, reproducible and easily applied methods for fibrosis assessment has been the major limitation in both the clinical management and for research in liver diseases. However, the problem of the development of biomarkers capable of non-invasive staging of fibrosis in the liver is difficult due to the fact that the process of fibrogenesis is a component of the normal healing response to injury, invasion by pathogens, and many other etiologic factors. Current non-invasive methods range from serum biomarker assays to advanced imaging techniques such as transient elastography and magnetic resonance imaging (MRI). Among non-invasive methods that gain strongest clinical foothold are FibroScan elastometry and serum-based APRI and FibroTest. There are many other tests that are not yet widely validated, but are none the less, promising. The rate of adoption of non-invasive diagnostic tests for liver fibrosis differs from country to country, but remains limited. At the present time, use of non-invasive procedures could be recommended as pre-screening that may allow physicians to narrow down the patients' population before definitive testing of liver fibrosis by biopsy of the liver. This review provides a systematic overview of these techniques, as well as both direct and indirect biomarkers based approaches used to stage fibrosis and covers recent developments in this rapidly advancing area.
PMCID: PMC3176189  PMID: 21849046
2.  Nutrigenomics Therapy of Hepatisis C Virus Induced-hepatosteatosis 
BMC Gastroenterology  2010;10:49.
Nutrigenomics is a relatively new branch of nutrition science, which aim is to study the impact of the foods we eat on the function of our genes. Hepatosteatosis is strongly associated with hepatitis C virus infection, which is known to increase the risk of the disease progression and reduce the likelihood of responding to anti- virus treatment. It is well documented that hepatitis C virus can directly alter host cell lipid metabolism through nuclear transcription factors. To date, only a limited number of studies have been on the effect of human foods on the nuclear transcription factors of hepatitis C virus -induced hepatosteatosis.
Three nutrients, selected among 46 different nutrients: ╬▓-carotene, vitamin D2, and linoleic acid were found in a cell culture system to inhibit hepatitis C virus RNA replication. In addition, polyunsaturated fatty acids (PUFAs) especially arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) have been demonstrated to inhibit hepatitis C virus RNA replication. These PUFAs, in particular the highly unsaturated n-3 fatty acids change the gene expression of PPARa and SREBP, suppress the expression of mRNAs encoding key metabolic enzymes and hereby suppress hepatic lipogenesis and triglyceride synthesis, as well as secretion and accumulation in tissues. A recent prospective clinical trial of 1,084 chronic hepatitis C patients compared to 2,326 healthy subjects suggests that chronic hepatitis C patients may benefit from strict dietary instructions.
Increasing evidence suggest that some crucial nuclear transcription factors related to hepatitis C virus -associated hepatosteatosis and hepatitis C virus RNA itself can be controlled by specific anti- hepatitis C virus nutrition. It seems important that these findings are taken into account and specific nutritional supplements developed to be used in combination with interferon as adjunctive therapy with the aim to improve both the early as well as the sustained virological response.
PMCID: PMC2896340  PMID: 20487553

Results 1-2 (2)