PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Evolutionary maintenance of filovirus-like genes in bat genomes 
Background
Little is known of the biological significance and evolutionary maintenance of integrated non-retroviral RNA virus genes in eukaryotic host genomes. Here, we isolated novel filovirus-like genes from bat genomes and tested for evolutionary maintenance. We also estimated the age of filovirus VP35-like gene integrations and tested the phylogenetic hypotheses that there is a eutherian mammal clade and a marsupial/ebolavirus/Marburgvirus dichotomy for filoviruses.
Results
We detected homologous copies of VP35-like and NP-like gene integrations in both Old World and New World species of Myotis (bats). We also detected previously unknown VP35-like genes in rodents that are positionally homologous. Comprehensive phylogenetic estimates for filovirus NP-like and VP35-like loci support two main clades with a marsupial and a rodent grouping within the ebolavirus/Lloviu virus/Marburgvirus clade. The concordance of VP35-like, NP-like and mitochondrial gene trees with the expected species tree supports the notion that the copies we examined are orthologs that predate the global spread and radiation of the genus Myotis. Parametric simulations were consistent with selective maintenance for the open reading frame (ORF) of VP35-like genes in Myotis. The ORF of the filovirus-like VP35 gene has been maintained in bat genomes for an estimated 13. 4 MY. ORFs were disrupted for the NP-like genes in Myotis. Likelihood ratio tests revealed that a model that accommodates positive selection is a significantly better fit to the data than a model that does not allow for positive selection for VP35-like sequences. Moreover, site-by-site analysis of selection using two methods indicated at least 25 sites in the VP35-like alignment are under positive selection in Myotis.
Conclusions
Our results indicate that filovirus-like elements have significance beyond genomic imprints of prior infection. That is, there appears to be, or have been, functionally maintained copies of such genes in mammals. "Living fossils" of filoviruses appear to be selectively maintained in a diverse mammalian genus (Myotis).
doi:10.1186/1471-2148-11-336
PMCID: PMC3229293  PMID: 22093762
2.  Mesozoic fossils (>145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators 
Background
The timescale of the origins of Daphnia O. F. Mueller (Crustacea: Cladocera) remains controversial. The origin of the two main subgenera has been associated with the breakup of the supercontinent Pangaea. This vicariance hypothesis is supported by reciprocal monophyly, present day associations with the former Gondwanaland and Laurasia regions, and mitochondrial DNA divergence estimates. However, previous multilocus nuclear DNA sequence divergence estimates at < 10 Million years are inconsistent with the breakup of Pangaea. We examined new and existing cladoceran fossils from a Mesozoic Mongolian site, in hopes of gaining insights into the timescale of the evolution of Daphnia.
Results
We describe new fossils of ephippia from the Khotont site in Mongolia associated with the Jurassic-Cretaceous boundary (about 145 MYA) that are morphologically similar to several modern genera of the family Daphniidae, including the two major subgenera of Daphnia, i.e., Daphnia s. str. and Ctenodaphnia. The daphniid fossils co-occurred with fossils of the predaceous phantom midge (Chaoboridae).
Conclusions
Our findings indicate that the main subgenera of Daphnia are likely much older than previously known from fossils (at least 100 MY older) or from nuclear DNA estimates of divergence. The results showing co-occurrence of the main subgenera far from the presumed Laurasia/Gondwanaland dispersal barrier shortly after formation suggests that vicariance from the breakup of Pangaea is an unlikely explanation for the origin of the main subgenera. The fossil impressions also reveal that the coevolution of a dipteran predator (Chaoboridae) with the subgenus Daphnia is much older than previously known -- since the Mesozoic.
doi:10.1186/1471-2148-11-129
PMCID: PMC3123605  PMID: 21595889
3.  Filoviruses are ancient and integrated into mammalian genomes 
Background
Hemorrhagic diseases from Ebolavirus and Marburgvirus (Filoviridae) infections can be dangerous to humans because of high fatality rates and a lack of effective treatments or vaccine. Although there is evidence that wild mammals are infected by filoviruses, the biology of host-filovirus systems is notoriously poorly understood. Specifically, identifying potential reservoir species with the expected long-term coevolutionary history of filovirus infections has been intractable. Integrated elements of filoviruses could indicate a coevolutionary history with a mammalian reservoir, but integration of nonretroviral RNA viruses is thought to be nonexistent or rare for mammalian viruses (such as filoviruses) that lack reverse transcriptase and replication inside the nucleus. Here, we provide direct evidence of integrated filovirus-like elements in mammalian genomes by sequencing across host-virus gene boundaries and carrying out phylogenetic analyses. Further we test for an association between candidate reservoir status and the integration of filoviral elements and assess the previous age estimate for filoviruses of less than 10,000 years.
Results
Phylogenetic and sequencing evidence from gene boundaries was consistent with integration of filoviruses in mammalian genomes. We detected integrated filovirus-like elements in the genomes of bats, rodents, shrews, tenrecs and marsupials. Moreover, some filovirus-like elements were transcribed and the detected mammalian elements were homologous to a fragment of the filovirus genome whose expression is known to interfere with the assembly of Ebolavirus. The phylogenetic evidence strongly indicated that the direction of transfer was from virus to mammal. Eutherians other than bats, rodents, and insectivores (i.e., the candidate reservoir taxa for filoviruses) were significantly underrepresented in the taxa with detected integrated filovirus-like elements. The existence of orthologous filovirus-like elements shared among mammalian genera whose divergence dates have been estimated suggests that filoviruses are at least tens of millions of years old.
Conclusions
Our findings indicate that filovirus infections have been recorded as paleoviral elements in the genomes of small mammals despite extranuclear replication and a requirement for cooption of reverse transcriptase. Our results show that the mammal-filovirus association is ancient and has resulted in candidates for functional gene products (RNA or protein).
doi:10.1186/1471-2148-10-193
PMCID: PMC2906475  PMID: 20569424
4.  Rapid ecological isolation and intermediate genetic divergence in lacustrine cyclic parthenogens 
Background
Ecological shifts can promote rapid divergence and speciation. However, the role of ecological speciation in animals that reproduce predominantly asexually with periodic sex and strong dispersal, such as lacustrine cladocerans, is poorly understood. These life history traits may slow or prevent ecological lineage formation among populations. Proponents of the postglacial ecological isolation hypothesis for Daphnia suggest that some species have formed postglacially in adjacent, but ecologically different habitats. We tested this hypothesis with ecological, morphological, and multilocus coalescence analyses in the putative lacustrine sister species, Daphnia parvula and Daphnia retrocurva.
Results
Daphnia parvula and D. retrocurva showed strong habitat separation with rare co-occurrence. Lakes inhabited by D. parvula were smaller in size and contained lower densities of invertebrate predators compared to lakes containing D. retrocurva. In the laboratory, D. retrocurva was less vulnerable to invertebrate predation, whereas D. parvula was less vulnerable to vertebrate predation and was smaller and more transparent than D. retrocurva. The species are significantly differentiated at mitochondrial and nuclear loci and form an intermediate genetic divergence pattern between panmixia and reciprocal monophyly. Coalescence and population genetic modelling indicate a Late or Post Glacial time of divergence with a demographic expansion.
Conclusions
Despite their young age and mixed breeding system, D. parvula and D. retrocurva exhibit significant ecological and genetic divergence that is coincident with the formation of deep temperate glacial lakes. We propose that predation may have facilitated the rapid divergence between D. parvula and D. retrocurva and that intermediate divergence of aquatic cyclic parthenogens is likely more common than previously thought.
doi:10.1186/1471-2148-10-166
PMCID: PMC2895610  PMID: 20525388
5.  Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod 
Background
Populations may be bound by contemporary gene flow, selective sweeps, and extinction-recolonization processes. Indeed, existing molecular estimates indicate that species with low levels of gene flow are rare. However, strong priority effects and local selective regimes may hinder gene flow (despite dispersal) sending populations on independent evolutionary trajectories. In this scenario (the monopolization hypothesis), population differentiation will increase with time and genealogical evidence should yield ample private haplotypes. Cyclical parthenogens (e.g. rotifers and cladocerans such as Daphnia) have an increased capacity for rapid local adaptation and priority effects because sexual reproduction is followed by multiple generations of clonal selection and massive egg bank formation. We aimed to better understand the history of population differentiation and ongoing gene flow in Daphnia rosea s.l., by comparing population and regional divergences in mature unglaciated areas and younger previously glaciated areas. We also examined the timing and paths of colonization of previously-glaciated areas to assess the dispersal limitations of D. rosea s.l. We used DNA sequence variation (84 populations and >400 individuals) at the mitochondrial ND2 and nuclear HSP90 loci from Holarctic populations for our genetic analyses.
Results
The genetic evidence indicated pronounced historical structure. Holarctic mtDNA phylogenies of D. rosea s.l. revealed three geographically restricted and divergent clades: European, Siberian and Japanese/American. The Japanese/American clade showed marked population genetic structure (FST > 0.8) that was weakly associated with geographic distance, and a high proportion of private haplotypes. Populations from older unglaciated habitats (i.e., Japan) showed higher DNA sequence divergences than populations from presumed younger habitats (i.e. non-Beringian North America) with nDNA and with mtDNA. Mismatch analyses of mtDNA and nDNA were consistent with a single rapid post-glacial expansion of D. rosea that covered most of the New World.
Conclusion
Our evidence agrees with negligible gene flow after founding, and the accumulation of genetic divergence with habitat age. Existing direct evidence and our mismatch analyses indicate that the pronounced population differentiation is unlikely to be due to dispersal limitation. Instead, priority effects and local selection regimes may play a role in limiting gene flow. The results challenge the notion that lacustrine populations of cladocerans are generally unified by contemporary gene flow.
doi:10.1186/1471-2148-7-52
PMCID: PMC1852300  PMID: 17407568

Results 1-5 (5)