PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
2.  An automated approach for the identification of horizontal gene transfers from complete genomes reveals the rhizome of Rickettsiales 
Background
Horizontal gene transfer (HGT) is considered to be a major force driving the evolutionary history of prokaryotes. HGT is widespread in prokaryotes, contributing to the genomic repertoire of prokaryotic organisms, and is particularly apparent in Rickettsiales genomes. Gene gains from both distantly and closely related organisms play crucial roles in the evolution of bacterial genomes. In this work, we focus on genes transferred from distantly related species into Rickettsiales species.
Results
We developed an automated approach for the detection of HGT from other organisms (excluding alphaproteobacteria) into Rickettsiales genomes. Our systematic approach consisted of several specialized features including the application of a parsimony method for inferring phyletic patterns followed by blast filter, automated phylogenetic reconstruction and the application of patterns for HGT detection. We identified 42 instances of HGT in 31 complete Rickettsiales genomes, of which 38 were previously unidentified instances of HGT from Anaplasma, Wolbachia, Candidatus Pelagibacter ubique and Rickettsia genomes. Additionally, putative cases with no phylogenetic support were assigned gene ontology terms. Overall, these transfers could be characterized as “rhizome-like”.
Conclusions
Our analysis provides a comprehensive, systematic approach for the automated detection of HGTs from several complete proteome sequences that can be applied to detect instances of HGT within other genomes of interest.
doi:10.1186/1471-2148-12-243
PMCID: PMC3575314  PMID: 23234643
Horizontal gene transfer; Rickettsiales; Candidatus Pelagibacter ubique; Sympatry
3.  GPR50 is the mammalian ortholog of Mel1c: Evidence of rapid evolution in mammals 
Background
The melatonin receptor subfamily contains three members Mel1a, Mel1b and Mel1c, found in all vertebrates except for Mel1c which is found only in fish, Xenopus species and the chicken. Another receptor, the melatonin related receptor known as GPR50, found exclusively in mammals and later identified as a member of the melatonin receptor subfamily because of its identity to the three melatonin receptors despite its absence of affinity for melatonin. The aim of this study was to describe the evolutionary relationships between GPR50 and the three other members of the melatonin receptor subfamily.
Results
Using an in silico approach, we demonstrated that GPR50 is the ortholog of the high affinity Mel1c receptor. It was necessary to also study the synteny of this gene to reach this conclusion because classical mathematical models that estimate orthology and build phylogenetic trees were not sufficient. The receptor has been deeply remodelled through evolution by the mutation of numerous amino acids and by the addition of a long C-terminal tail. These alterations have modified its affinity for melatonin and probably affected its interactions with the other two known melatonin receptors MT1 and MT2 that are encoded by Mel1a and Mel1b genes respectively. Evolutionary studies provided evidence that the GPR50 group evolved under different selective pressure as compared to the orthologous groups Me11 a, b, and c.
Conclusion
This study demonstrated that there are only three members in the melatonin receptor subfamily with one of them (Me11c) undergoing rapid evolution from fishes and birds to mammals. Further studies are necessary to investigate the physiological roles of this receptor.
doi:10.1186/1471-2148-8-105
PMCID: PMC2323367  PMID: 18400093
4.  Nme protein family evolutionary history, a vertebrate perspective 
Background
The Nme family, previously known as Nm23 or NDPK, is involved in various molecular processes including tumor metastasis and some members of the family, but not all, exhibit a Nucleoside Diphosphate Kinase (NDPK) activity. Ten genes are known in humans, in which some members have been extensively studied. In non-mammalian species, the Nme protein family has received, in contrast, far less attention. The picture of the vertebrate Nme family remains thus incomplete and orthology relationships with mammalian counterparts were only partially characterized. The present study therefore aimed at characterizing the Nme gene repertoire in vertebrates with special interest for teleosts, and providing a comprehensive overview of the Nme gene family evolutionary history in vertebrates.
Results
In the present study, we present the evolutionary history of the Nme family in vertebrates and characterize the gene family repertoire for the first time in several non-mammalian species. Our observations show that vertebrate Nme genes can be separated in two evolutionary distinct groups. Nme1, Nme2, Nme3, and Nme4 belong to Group I while vertebrate Nme5, Nme6, Nme7, Nme8, and Nme9 belong to Group II. The position of Nme10 is in contrast more debatable due to its very specific evolutionary history. The present study clearly indicates that Nme5, Nme6, Nme7, and Nme8 originate from duplication events that occurred before the chordate radiation. In contrast, Nme genes of the Group I have a very different evolutionary history as our results suggest that they all arise from a common gene present in the chordate ancestor. In addition, expression patterns of all zebrafish nme transcripts were studied in a broad range of tissues by quantitative PCR and discussed in the light of the function of their mammalian counterparts.
Conclusion
This work offers an evolutionary framework that will pave the way for future studies on vertebrate Nme proteins and provides a unified vertebrate Nme nomenclature that is consistent with the nomenclature in use in mammals. Based on protein structure and expression data, we also provide new insight into molecular functions of Nme proteins among vertebrates and raise intriguing questions on the roles of Nme proteins in gonads.
doi:10.1186/1471-2148-9-256
PMCID: PMC2777172  PMID: 19852809
5.  Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase A family 
Background
There have been many claims of adaptive molecular evolution, but what role does positive selection play in functional divergence? The aim of this study was to test the relationship between evolutionary and functional shifts with special emphasis on the role of the environment. For this purpose, we studied the fungal lipase/feruloyl esterase A family, whose functional diversification makes it a very promising candidate.
Results
The results suggested functional shift following a duplication event where neofunctionalisation of feruloyl esterase A had occurred with conservation of the ancestral lipase function. Evolutionary shift was detected using the branch-site model for testing positive selection on individual codons along specific lineages. Positively selected amino acids were detected. Furthermore, biological data obtained from site-directed mutagenesis experiments clearly demonstrated that certain amino acids under positive selection were involved in the functional shift. We reassessed evolutionary history in terms of environmental response, and hypothesized that environmental changes such as colonisation by terrestrial plants might have driven adaptation by functional diversification in Euascomycetes (Aspergilli), thus conferring a selective advantage on this group.
Conclusion
The results reported here illustrate a rare example of connection between fundamental events in molecular evolution. We demonstrated an unequivocal connection between evolutionary and functional shifts, which led us to conclude that these events were probably linked to environmental change.
doi:10.1186/1471-2148-6-92
PMCID: PMC1660568  PMID: 17092334
6.  Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals 
Background
Gene losses played a role which may have been as important as gene and genome duplications and rearrangements, in modelling today species' genomes from a common ancestral set of genes. The set and diversity of protein-coding genes in a species has direct output at the functional level. While gene losses have been reported in all the major lineages of the metazoan tree of life, none have proposed a focus on specific losses in the vertebrates and mammals lineages. In contrast, genes lost in protostomes (i.e. arthropods and nematodes) but still present in vertebrates have been reported and extensively detailed. This probable over-anthropocentric way of comparing genomes does not consider as an important phenomena, gene losses in species that are usually described as "higher". However reporting universally conserved genes throughout evolution that have recently been lost in vertebrates and mammals could reveal interesting features about the evolution of our genome, particularly if these losses can be related to losses of capability.
Results
We report 11 gene families conserved throughout eukaryotes from yeasts (such as Saccharomyces cerevisiae) to bilaterian animals (such as Drosophila melanogaster or Caenorhabditis elegans). This evolutionarily wide conservation suggests they were present in the last common ancestors of fungi and metazoan animals. None of these 11 gene families are found in human nor mouse genomes, and their absence generally extends to all vertebrates. A total of 8 out of these 11 gene families have orthologs in plants, suggesting they were present in the Last Eukaryotic Common Ancestor (LECA). We investigated known functional information for these 11 gene families. This allowed us to correlate some of the lost gene families to loss of capabilities.
Conclusion
Mammalian and vertebrate genomes lost evolutionary conserved ancestral genes that are probably otherwise not dispensable in eukaryotes. Hence, the human genome, which is generally viewed as being the result of increased complexity and gene-content, has also evolved through simplification and gene losses. This acknowledgement confirms, as already suggested, that the genome of our far ancestor was probably more complex than ever considered.
doi:10.1186/1471-2148-6-5
PMCID: PMC1382263  PMID: 16420703

Results 1-6 (6)