PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons 
Background
The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intron's promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element.
Results
Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1. Re-examination of all published cox1 genes uncovered additional cases of extended co-conversion and identified a rare case of putative intron loss, accompanied by full retention of the CCT.
Conclusions
We infer that the cox1 intron was separately and recently acquired by at least three different lineages of Solanaceae. The striking identity of the intron and CCT from two of these lineages suggests that one of these three intron captures may have occurred by a within-family transfer event. This is consistent with previous evidence that horizontal transfer in plants is biased towards phylogenetically local events. The discovery of extended co-conversion suggests that other cox1 conversions may be longer than realized but obscured by the exceptional conservation of plant mitochondrial sequences. Our findings provide further support for the rampant-transfer model of cox1 intron evolution and recommend the Solanaceae as a model system for the experimental analysis of cox1 intron transfer in plants.
doi:10.1186/1471-2148-11-277
PMCID: PMC3192709  PMID: 21943226
horizontal gene transfer; cox1 intron; Solanaceae; mitochondrial DNA; homing endonuclease
2.  Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia 
Background
Mitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms.
Results
In this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near "recombinational equilibrium". The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA.
Conclusions
These findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered selective constraints operating on the mitochondrial translational apparatus in this lineage.
doi:10.1186/1471-2148-10-274
PMCID: PMC2942850  PMID: 20831793
3.  Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns 
Background
Group I introns are one of the four major classes of introns as defined by their distinct splicing mechanisms. Because they catalyze their own removal from precursor transcripts, group I introns are referred to as autocatalytic introns. Group I introns are common in fungal and protist nuclear ribosomal RNA genes and in organellar genomes. In contrast, they are rare in all other organisms and genomes, including bacteria.
Results
Here we report five group I introns, each containing a LAGLIDADG homing endonuclease gene (HEG), in large subunit (LSU) rRNA genes of cyanobacteria. Three of the introns are located in the LSU gene of Synechococcus sp. C9, and the other two are in the LSU gene of Synechococcus lividus strain C1. Phylogenetic analyses show that these introns and their HEGs are closely related to introns and HEGs located at homologous insertion sites in organellar and bacterial rDNA genes. We also present a compilation of group I introns with homing endonuclease genes in bacteria.
Conclusion
We have discovered multiple HEG-containing group I introns in a single bacterial gene. To our knowledge, these are the first cases of multiple group I introns in the same bacterial gene (multiple group I introns have been reported in at least one phage gene and one prophage gene). The HEGs each contain one copy of the LAGLIDADG motif and presumably function as homodimers. Phylogenetic analysis, in conjunction with their patchy taxonomic distribution, suggests that these intron-HEG elements have been transferred horizontally among organelles and bacteria. However, the mode of transfer and the nature of the biological connections among the intron-containing organisms are unknown.
doi:10.1186/1471-2148-7-159
PMCID: PMC1995217  PMID: 17825109
4.  Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants 
Background
It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants.
Results
A broad survey was undertaken to evaluate synonymous substitution rates in mitochondrial genes of angiosperms and gymnosperms. Although most taxa conform to the generality that plant mitochondrial sequences evolve slowly, additional cases of highly accelerated rates were found. We explore in detail one of these new cases, within the genus Silene. A roughly 100-fold increase in synonymous substitution rate is estimated to have taken place within the last 5 million years and involves only one of ten species of Silene sampled in this study. Examples of unusually slow sequence evolution were also identified. Comparison of the fastest and slowest lineages shows that synonymous substitution rates vary by four orders of magnitude across seed plants. In other words, some plant mitochondrial lineages accumulate more synonymous change in 10,000 years than do others in 100 million years. Several perplexing cases of gene-to-gene variation in sequence divergence within a plant were uncovered. Some of these probably reflect interesting biological phenomena, such as horizontal gene transfer, mitochondrial-to-nucleus transfer, and intragenomic variation in mitochondrial substitution rates, whereas others are likely the result of various kinds of errors.
Conclusion
The extremes of synonymous substitution rates measured here constitute by far the largest known range of rate variation for any group of organisms. These results highlight the utility of examining absolute substitution rates in a phylogenetic context rather than by traditional pairwise methods. Why substitution rates are generally so low in plant mitochondrial genomes yet occasionally increase dramatically remains mysterious.
doi:10.1186/1471-2148-7-135
PMCID: PMC1973135  PMID: 17688696
5.  Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus 
Background
Many mitochondrial genes, especially ribosomal protein genes, have been frequently transferred as functional entities to the nucleus during plant evolution, often by an RNA-mediated process. A notable case of transfer involves the rps14 gene of three grasses (rice, maize, and wheat), which has been relocated to the intron of the nuclear sdh2 gene and which is expressed and targeted to the mitochondrion via alternative splicing and usage of the sdh2 targeting peptide. Although this transfer occurred at least 50 million years ago, i.e., in a common ancestor of these three grasses, it is striking that expressed, nearly intact pseudogenes of rps14 are retained in the mitochondrial genomes of both rice and wheat. To determine how ancient this transfer is, the extent to which mitochondrial rps14 has been retained and is expressed in grasses, and whether other transfers of rps14 have occurred in grasses and their relatives, we investigated the structure, expression, and phylogeny of mitochondrial and nuclear rps14 genes from 32 additional genera of grasses and from 9 other members of the Poales.
Results
Filter hybridization experiments showed that rps14 sequences are present in the mitochondrial genomes of all examined Poales except for members of the grass subfamily Panicoideae (to which maize belongs). However, PCR amplification and sequencing revealed that the mitochondrial rps14 genes of all examined grasses (Poaceae), Cyperaceae, and Joinvilleaceae are pseudogenes, with all those from the Poaceae sharing two 4-NT frameshift deletions and all those from the Cyperaceae sharing a 5-NT insertion (only one member of the Joinvilleaceae was examined). cDNA analysis showed that all mitochondrial pseudogenes examined (from all three families) are transcribed, that most are RNA edited, and that surprisingly many of the edits are reverse (U→C) edits. Putatively nuclear copies of rps14 were isolated from one to several members of each of these three Poales families. Multiple lines of evidence indicate that the nuclear genes are probably the products of three independent transfers.
Conclusion
The rps14 gene has, most likely, been functionally transferred from the mitochondrion to the nucleus at least three times during the evolution of the Poales. The transfers in Cyperaceae and Poaceae are relatively ancient, occurring in the common ancestor of each family, roughly 80 million years ago, whereas the putative Joinvilleaceae transfer may be the most recent case of functional organelle-to-nucleus transfer yet described in any organism. Remarkably, nearly intact and expressed pseudogenes of rps14 have persisted in the mitochondrial genomes of most lineages of Poaceae and Cyperaceae despite the antiquity of the transfers and of the frameshift and RNA editing mutations that mark the mitochondrial genes as pseudogenes. Such long-term, nearly pervasive survival of expressed, apparent pseudogenes is to our knowledge unparalleled in any genome. Such survival probably reflects a combination of factors, including the short length of rps14, its location immediately downstream of rpl5 in most plants, and low rates of nucleotide substitutions and indels in plant mitochondrial DNAs. Their survival also raises the possibility that these rps14 sequences may not actually be pseudogenes despite their appearance as such. Overall, these findings indicate that intracellular gene transfer may occur even more frequently in angiosperms than already recognized and that pseudogenes in plant mitochondrial genomes can be surprisingly resistant to forces that lead to gene loss and inactivation.
doi:10.1186/1471-2148-6-55
PMCID: PMC1543663  PMID: 16842621
6.  Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae 
Background
Rates of synonymous nucleotide substitutions are, in general, exceptionally low in plant mitochondrial genomes, several times lower than in chloroplast genomes, 10–20 times lower than in plant nuclear genomes, and 50–100 times lower than in many animal mitochondrial genomes. Several cases of moderate variation in mitochondrial substitution rates have been reported in plants, but these mostly involve correlated changes in chloroplast and/or nuclear substitution rates and are therefore thought to reflect whole-organism forces rather than ones impinging directly on the mitochondrial mutation rate. Only a single case of extensive, mitochondrial-specific rate changes has been described, in the angiosperm genus Plantago.
Results
We explored a second potential case of highly accelerated mitochondrial sequence evolution in plants. This case was first suggested by relatively poor hybridization of mitochondrial gene probes to DNA of Pelargonium hortorum (the common geranium). We found that all eight mitochondrial genes sequenced from P. hortorum are exceptionally divergent, whereas chloroplast and nuclear divergence is unexceptional in P. hortorum. Two mitochondrial genes were sequenced from a broad range of taxa of variable relatedness to P. hortorum, and absolute rates of mitochondrial synonymous substitutions were calculated on each branch of a phylogenetic tree of these taxa. We infer one major, ~10-fold increase in the mitochondrial synonymous substitution rate at the base of the Pelargonium family Geraniaceae, and a subsequent ~10-fold rate increase early in the evolution of Pelargonium. We also infer several moderate to major rate decreases following these initial rate increases, such that the mitochondrial substitution rate has returned to normally low levels in many members of the Geraniaceae. Finally, we find unusually little RNA editing of Geraniaceae mitochondrial genes, suggesting high levels of retroprocessing in their history.
Conclusion
The existence of major, mitochondrial-specific changes in rates of synonymous substitutions in the Geraniaceae implies major and reversible underlying changes in the mitochondrial mutation rate in this family. Together with the recent report of a similar pattern of rate heterogeneity in Plantago, these findings indicate that the mitochondrial mutation rate is a more plastic character in plants than previously realized. Many molecular factors could be responsible for these dramatic changes in the mitochondrial mutation rate, including nuclear gene mutations affecting the fidelity and efficacy of mitochondrial DNA replication and/or repair and – consistent with the lack of RNA editing – exceptionally high levels of "mutagenic" retroprocessing. That the mitochondrial mutation rate has returned to normally low levels in many Geraniaceae raises the possibility that, akin to the ephemerality of mutator strains in bacteria, selection favors a low mutation rate in plant mitochondria.
doi:10.1186/1471-2148-5-73
PMCID: PMC1343592  PMID: 16368004
7.  Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? 
Background
Numerous studies, using in aggregate some 28 genes, have achieved a consensus in recognizing three groups of plants, including Amborella, as comprising the basal-most grade of all other angiosperms. A major exception is the recent study by Goremykin et al. (2003; Mol. Biol. Evol. 20:1499–1505), whose analyses of 61 genes from 13 sequenced chloroplast genomes of land plants nearly always found 100% support for monocots as the deepest angiosperms relative to Amborella, Calycanthus, and eudicots. We hypothesized that this conflict reflects a misrooting of angiosperms resulting from inadequate taxon sampling, inappropriate phylogenetic methodology, and rapid evolution in the grass lineage used to represent monocots.
Results
We used two main approaches to test this hypothesis. First, we sequenced a large number of chloroplast genes from the monocot Acorus and added these plus previously sequenced Acorus genes to the Goremykin et al. (2003) dataset in order to explore the effects of altered monocot sampling under the same analytical conditions used in their study. With Acorus alone representing monocots, strongly supported Amborella-sister trees were obtained in all maximum likelihood and parsimony analyses, and in some distance-based analyses. Trees with both Acorus and grasses gave either a well-supported Amborella-sister topology or else a highly unlikely topology with 100% support for grasses-sister and paraphyly of monocots (i.e., Acorus sister to "dicots" rather than to grasses). Second, we reanalyzed the Goremykin et al. (2003) dataset focusing on methods designed to account for rate heterogeneity. These analyses supported an Amborella-sister hypothesis, with bootstrap support values often conflicting strongly with cognate analyses performed without allowing for rate heterogeneity. In addition, we carried out a limited set of analyses that included the chloroplast genome of Nymphaea, whose position as a basal angiosperm was also, and very recently, challenged.
Conclusions
These analyses show that Amborella (or Amborella plus Nymphaea), but not monocots, is the sister group of all other angiosperms among this limited set of taxa and that the grasses-sister topology is a long-branch-attraction artifact leading to incorrect rooting of angiosperms. These results highlight the danger of having lots of characters but too few and, especially, molecularly divergent taxa, a situation long recognized as potentially producing strongly misleading molecular trees. They also emphasize the importance in phylogenetic analysis of using appropriate evolutionary models.
doi:10.1186/1471-2148-4-35
PMCID: PMC543456  PMID: 15453916

Results 1-7 (7)