PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Laxative effects and mechanism of action of Brazilian green propolis 
Background
Brazilian green propolis is reported to have wide range of biological properties including antibacterial, anti-inflammatory, anti-influenza, and antioxidant activities. In the digestive system, a protective effect of propolis on gastric ulcer has been reported, but a laxative effect has not yet been reported. We investigated the effect and the mechanism of action of water and ethanol extracts of Brazilian green propolis.
Methods
We examined the laxative effect of propolis on stool frequency by administering orally an ethanol extract of propolis (EEP) or a water extract of propolis (WEP) at 10, 50, 100, or 500 mg/kg to normal mice. We then investigated the effects of propolis using constipation model mice induced by two types of drugs, loperamide (a μ opioid receptor agonist) and clonidine (an α-2 adrenergic receptor agonist). We also investigated the effects of WEP on gastrointestinal transit and contractional tension of the ileum to uncover the mechanism of action of WEP.
Results
Treatment with WEP, but not with EEP, significantly increased the weight of stools (p<0.01 at 500 mg/kg). WEP treatment significantly restored stool frequency and stool weight in clonidine-induced constipation model mice, but not in loperamide-induced constipation model mice. WEP treatment did not affect gastro-intestinal transit, but significantly increased the contractional tension of the isolated ileum of guinea pigs. This increase was inhibited by an acetylcholine receptor antagonist (atropine), but not by a 5-HT receptor antagonist (GR113808).
Conclusion
These findings indicate that WEP has laxative effects both in normal mice and in clonidine-induced constipation model mice. The laxative effects of WEP might be mediated by increased contractional tension of the ileum exerted at least in part via activation of an acetylcholine receptor.
doi:10.1186/1472-6882-12-192
PMCID: PMC3487869  PMID: 23088672
Propolis; Laxative; Acetylcholine receptor; Water extract
2.  Laxative effects of agarwood on low-fiber diet-induced constipation in rats 
Background
Agarwood (Aquilaria sinensis), well known as incense in Southeast Asia, has been used as a digestive in traditional medicine. We investigated the laxative effects of an ethanol extract of agarwood leaves (EEA) in a rat model of low-fiber diet-induced constipation.
Methods
A set of rats was bred on a normal diet while another set was placed on a low-fiber diet to induce constipation. The laxative effect of agarwood was then investigated on both sets of rats.
Results
Pretreatment of normal rats with single dose of EEA (600 mg/kg, p.o.) significantly increased frequency and weight of stools. Also, treatments with EEA (300 and 600 mg/kg, p.o.) for 14 days caused a significant increase in stool frequency and weight. Feeding of the animals with a low-fiber diet resulted in a decrease in stool weight, frequency, and water content and also delayed carmine egestion. A single treatment with EEA (600 mg/kg) or senna (150 and 300 mg/kg) significantly increased stool frequency, weight, and water content and also accelerated carmine egestion in the model rats. Once daily administrations of EEA (150 mg/kg), for 14 days, caused a significant increase in water content of stools. The higher doses of EEA (300 and 600 mg/kg) significantly increased frequency, weight, and water content of the stools while accelerating carmine egestion in the constipated rats. Senna (150 and 300 mg/kg) produced similar effect as the higher doses of EEA but, in addition, induced severe diarrhea.
Conclusion
These findings indicate that EEA has a laxative effect, without causing diarrhea, in a rat model of low-fiber diet-induced constipation. These findings suggest that EEA may be highly effective on constipation as a complementary medicine in humans suffering from life style-induced constipation.
doi:10.1186/1472-6882-10-68
PMCID: PMC2995776  PMID: 21078136
3.  Protective effects of a gastrointestinal agent containing Korean red ginseng on gastric ulcer models in mice 
Background
Korean red ginseng (KRG) is a ginseng that has been cultivated and aged for 4-6 years or more, and goes through an extensive cleaning, steaming and drying process. KRG contains more than 30 kinds of saponin components and has been reported as having various biological properties, such as anti-fatigue action, immune restoration, and neurovegetative effect. The purpose of this study was to assess the effects of a KRG-containing drug (KRGCD) on gastric ulcer models in mice.
Methods
Stomach ulcers were induced by oral ingestion of hydrochloride (HCl)/ethanol or indomethacin. Treatment with KRGCD (30, 100, and 300 mg/kg, p.o.) occurred 1 hr before the ulcer induction. Effect of KRGCD on anti-oxidant activity and gastric mucosal blood flow with a laser Doppler flowmeter in mice stomach tissue was evaluated.
Results
KRGCD (100 and 300 mg/kg, p.o.) significantly decreased ethanol- and indomethacin-induced gastric ulcer compared with the vehicle-treated (control) group. KRGCD (100 and 300 mg/kg) also decreased the level of thiobarbituric acid reactive substance (TBARS) and increased gastric mucosal blood flow compared with the control group.
Conclusions
These results suggest that the gastroprotective effects of KRGCD on mice ulcer models can be attributed to its ameliorating effect on oxidative damage and improving effect of gastric mucosal blood flow.
doi:10.1186/1472-6882-10-45
PMCID: PMC2936409  PMID: 20718962
4.  Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema 
Background
Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol.
Methods
The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography.
Results
The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides.
Conclusions
It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food.
doi:10.1186/1472-6882-10-30
PMCID: PMC2906419  PMID: 20573205
5.  Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells 
Background
Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs).
Methods
In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE.
Results
RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation.
Conclusion
Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.
doi:10.1186/1472-6882-9-45
PMCID: PMC2783019  PMID: 19917137
6.  Comparison of bee products based on assays of antioxidant capacities 
Background
Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen.
Methods
The hydrogen peroxide (H2O2)-, superoxide anion (O2·-)-, and hydroxyl radical (HO·)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF).
Results
The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C.
Conclusion
On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects.
doi:10.1186/1472-6882-9-4
PMCID: PMC2664783  PMID: 19243635

Results 1-6 (6)