Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  High sensitivity assays for docetaxel and paclitaxel in plasma using solid-phase extraction and high-performance liquid chromatography with UV detection 
The taxanes paclitaxel and docetaxel have traditionally been used in high doses every third week in the treatment of cancer. Lately there has been a trend towards giving weekly low doses to improve the therapeutic index. This article describes the development of high performance liquid chromatographic (HPLC) methods suitable for monitoring taxane levels in patients, focusing on patients receiving low-dose therapy.
Paclitaxel and docetaxel were extracted from human plasma by solid phase extraction, and detected by absorbance at 227 nm after separation by reversed phase high performance liquid chromatography. The methods were validated and their performance were tested using samples from patients receiving paclitaxel or docetaxel.
The limits of quantitation were 1 nM for docetaxel and 1.2 nM for paclitaxel. For both compounds linearity was confirmed from the limit of quantitation up to 1000 nM in plasma. The recoveries ranged between 92% and 118% for docetaxel and between 76% and 104% for paclitaxel. Accuracy and precision were within international acceptance criteria, that is within ± 15%, except at the limit of quantitation where values within ± 20% are acceptable. Low-dose patients included in an on going clinical trial had a median docetaxel concentration of 2.8 nM at 72 hours post infusion. Patients receiving 100 mg/m2 of paclitaxel had a mean paclitaxel concentration of 21 nM 48 hours after the end of infusion.
We have developed an HPLC method using UV detection capable of quantifying 1 nM of docetaxel in plasma samples. The method should be useful for pharmacokinetic determinations at all relevant doses of docetaxel. Using a similar methodology paclitaxel can be quantified down to a concentration of 1.2 nM in plasma with acceptable accuracy and precision. We further demonstrate that the previously reported negative influence of Cremophor EL on assay performance may be overcome by degradation of the detergent by incubation with lipase.
PMCID: PMC1382254  PMID: 16412237
2.  Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro 
Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company.
The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism.
The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity.
This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen no longer detectable in pharmaceutical-grade albumin. It further shows that the addition of stabilisers may be of major importance for this effect.
PMCID: PMC406516  PMID: 15046641

Results 1-2 (2)