PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Studies on the synthesis, characterization, binding with DNA and activities of two cis-planaramineplatinum(II) complexes of the form: cis-PtL(NH3)Cl2 where L = 3-hydroxypyridine and 2,3-diaminopyridine 
Background
Cis-planaramineplatinum(II) complexes like their trans isomers are often found to be active against cancer cell lines. The present study deals with the synthesis, characterization and determination of activity of new cis-planaramineplatinum(II) complexes.
Results
Two cis-planaramineplatinum(II) complexes: cis-(3-hydroxypyridine)(ammine)dichloroplatinum(II) (code named AH3) and cis-(2,3-diaminopyridine)(ammine)dichloroplatinum(II) (code named AH7) have been prepared and characterised based on elemental analyses, IR, Raman, mass and 1H NMR spectral measurements. The interactions of the compounds with pBR322 plasmid DNA have been investigated and their activity against ovarian cancer cell lines: A2780, A2780cisR and A2780ZD047Rhave been determined. Like cisplatin, AH3 and AH7 are believed to form mainly monofunctional N7(G) and bifunctional intrastrand N7(G)N7(G) adducts with DNA, causing a local distortion of a DNA strand. As a result, gel mobility of the DNA changes. Both AH3 and AH7 are found to be less active than cisplatin against the three cell lines with AH3 being the more active compound of the two. The higher activity of AH3 is in line with its lower molar conductivity value corresponding to a lower degree of dissociation.
Conclusion
The differences in activity of AH3, AH7 and cisplatin against the cell lines illustrate structure-activity relationship.
doi:10.1186/1472-6769-6-3
PMCID: PMC1431574  PMID: 16533399
2.  Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol 
Background
A recent crystal structure of monastrol in a ternary complex with the kinesin Eg5 motor domain highlights a novel, induced-fit drug binding site at atomic resolution. Mutational obliteration of the monastrol binding site results in a monastrol-resistant, but otherwise catalytically active Eg5 motor domain. However, considering the conformational changes at this site, it is unclear what specific interactions stabilize the interaction between monastrol and the Eg5 motor domain.
Results
To study the molecular complementarity of the monastrol-Eg5 interaction, we used a combination of synthetic chemistry and targeted mutations in Eg5 to measure the contribution of specific contacts to inhibition of Eg5 in vitro and in cultured cells. Structure-activity data on chemical derivatives, sequence analysis of Eg5 homologs from different species, and the effect of mutations near the drug binding site were consistent with the crystal structure.
Conclusion
The mechanism of monastrol revealed by our data rationalizes its specificity for Eg5 over other kinesins and highlights a potential mechanism of drug resistance for anti-cancer therapy targeting this site in Eg5.
doi:10.1186/1472-6769-6-2
PMCID: PMC1448180  PMID: 16504166
3.  Uncharged isocoumarin-based inhibitors of urokinase-type plasminogen activator 
Background
Urokinase-type plasminogen activator (uPA) plays a major role in extracellular proteolytic events associated with tumor cell growth, migration and angiogenesis. Consequently, uPA is an attractive target for the development of small molecule active site inhibitors. Most of the recent drug development programs aimed at nonpeptidic inhibitors targeted at uPA have focused on arginino mimetics containing amidine or guanidine functional groups attached to aromatic or heterocyclic scaffolds. There is a general problem of limited bioavailability of these charged inhibitors. In the present study, uPA inhibitors were designed on an isocoumarin scaffold containing uncharged substituents.
Results
4-Chloro-3-alkoxyisocoumarins were synthesized in which the 3-alkoxy group contained a terminal bromine; these were compared with similar inhibitors that contained a charged terminal functional group. Additional variations included functional groups attached to the seven position of the isocoumarin scaffold. N- [3-(3-Bromopropoxy)-4-chloro-1-oxo-1H-isochromen-7-yl]benzamide was identified as an uncharged lead inhibitor of uPA, Ki = 0.034 μM. Molecular modeling of human uPA with these uncharged inhibitors suggests that the bromine occupies the same position as positively charged arginino mimetic groups.
Conclusion
This study demonstrates that potent uncharged inhibitors of uPA can be developed based upon the isocoumarin scaffold. A tethered bromine in the three position and an aromatic group in the seven position are important contributors to binding. Although the aim was to develop compounds that act as mechanism-based inactivators, these inhibitors are competitive reversible inhibitors.
doi:10.1186/1472-6769-6-1
PMCID: PMC1479381  PMID: 16466576

Results 1-3 (3)