PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity 
BMC Chemical Biology  2010;10:2.
Background
NAD+ is a coenzyme for hydride transfer enzymes and a substrate for sirtuins and other NAD+-dependent ADPribose transfer enzymes. In wild-type Saccharomyces cerevisiae, calorie restriction accomplished by glucose limitation extends replicative lifespan in a manner that depends on Sir2 and the NAD+ salvage enzymes, nicotinic acid phosphoribosyl transferase and nicotinamidase. Though alterations in the NAD+ to nicotinamide ratio and the NAD+ to NADH ratio are anticipated by models to account for the effects of calorie restriction, the nature of a putative change in NAD+ metabolism requires analytical definition and quantification of the key metabolites.
Results
Hydrophilic interaction chromatography followed by tandem electrospray mass spectrometry were used to identify the 12 compounds that constitute the core NAD+ metabolome and 6 related nucleosides and nucleotides. Whereas yeast extract and nicotinic acid increase net NAD+ synthesis in a manner that can account for extended lifespan, glucose restriction does not alter NAD+ or nicotinamide levels in ways that would increase Sir2 activity.
Conclusions
The results constrain the possible mechanisms by which calorie restriction may regulate Sir2 and suggest that provision of vitamins and calorie restriction extend lifespan by different mechanisms.
doi:10.1186/1472-6769-10-2
PMCID: PMC2834649  PMID: 20175898
2.  Di-, tri- and tetra-5'-O-phosphorothioadenosyl substituted polyols as inhibitors of Fhit: Importance of the α-β bridging oxygen and β phosphorus replacement 
Background
The human FHIT gene is inactivated early in the development of many human cancers and loss of Fhit in mouse predisposes to cancer while reintroduction of FHIT suppresses tumor formation via induction of apoptosis. Fhit protein, a diadenosine polyphosphate hydrolase, does not require hydrolase activity to function in tumor suppression and may signal for apoptosis as an enzyme-substrate complex. Thus, high affinity nonhydrolyzable substrate analogs may either promote or antagonize Fhit function, depending on their features, in Fhit + cells. Previously synthesized analogs with phosphorothioadenosyl substitutions and "supercharged" branches do not bind better than natural substrates and thus have limited potential as cellular probes.
Results
Here we link adenosine 5'-O-phosphates and phosphorothioates to short-chain polyols to generate a series of substrate analogs. We obtain structure-activity data in the form of in vitro Fhit inhibition for four types of analog substitutions and describe two compounds, inhibitory constants for which are 65 and 75-fold lower than natural substrates.
Conclusions
The best Fhit inhibitors obtained to date separate two or more 5'-O-phosphoromonothioadenosyl moieties with as many bond lengths as in AppppA, maintain oxygen at the location of the α-β bridging oxygen, and replace carbon for the β phosphorus.
doi:10.1186/1472-6769-1-3
PMCID: PMC59680  PMID: 11701096

Results 1-2 (2)