PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Relationships between high-sensitive C-reactive protein and markers of arterial stiffness in hypertensive patients. Differences by sex 
Background
The present study was designed to evaluate the relationship between high-sensitivity C-reactive protein (hs-CRP) and arterial stiffness according to sex in patients with arterial hypertension.
Methods
A case-series study was carried out in 258 hypertensive patients without antecedents of cardiovascular disease or diabetes mellitus. Nephelometry was used to determine hs-CRP. Office or clinical and home blood pressures were measured with a validated OMRON model M10 sphygmomanometer. Ambulatory blood pressure monitoring was performed with the SpaceLabs 90207 system. Pulse wave velocity (PWV) and central and peripheral augmentation index (AIx) were measured with the SphygmoCor system, and a Sonosite Micromax ultrasound unit was used for automatic measurements of carotid intima-media thickness (IMT). Ambulatory arterial stiffness index and home arterial stiffness index were calculated as “1-slope” from the within-person regression analysis of diastolic-on-systolic ambulatory blood pressure.
Results
Central and peripheral AIx were greater in women than in men: 35.31 ± 9.95 vs 26.59 ± 11.45 and 102.06 ± 20.47 vs 85.97 ± 19.13, respectively. IMT was greater in men (0.73 ± 0.13 vs 0.69 ± 0.10). hs-CRP was positively correlated to IMT (r = 0.261), maximum (r = 0.290) and to peripheral AIx (r = 0.166) in men, and to PWV in both men (r = 0.280) and women (r = 0.250). In women, hs-CRP was negatively correlated to central AIx (r = −0.222). For each unit increase in hs-CRP, carotid IMT would increase 0.05 mm in men, and PWV would increase 0.07 m/sec in men and 0.08 m/sec in women, while central AIx would decrease 2.5 units in women. In the multiple linear regression analysis, hs-CRP explained 10.2% and 6.7% of PWV variability in women and men, respectively, 8.4% of carotid IMT variability in men, and 4.9% of central AIx variability in women.
Conclusions
After adjusting for age, other cardiovascular risk factors and the use of antihypertensive and lipid-lowering drugs, hs-CRP was seen to be positively correlated to carotid IMT in men, and negatively correlated to central AIx in women. The association of hs-CRP to arterial stiffness parameters differs between men and women.
doi:10.1186/1471-2261-12-37
PMCID: PMC3473264  PMID: 22676422
Hypertension; High-sensitive C-reactive protein; Arterial stiffness
2.  Office and 24-hour heart rate and target organ damage in hypertensive patients 
Background
We investigated the association between heart rate and its variability with the parameters that assess vascular, renal and cardiac target organ damage.
Methods
A cross-sectional study was performed including a consecutive sample of 360 hypertensive patients without heart rate lowering drugs (aged 56 ± 11 years, 64.2% male). Heart rate (HR) and its standard deviation (HRV) in clinical and 24-hour ambulatory monitoring were evaluated. Renal damage was assessed by glomerular filtration rate and albumin/creatinine ratio; vascular damage by carotid intima-media thickness and ankle/brachial index; and cardiac damage by the Cornell voltage-duration product and left ventricular mass index.
Results
There was a positive correlation between ambulatory, but not clinical, heart rate and its standard deviation with glomerular filtration rate, and a negative correlation with carotid intima-media thickness, and night/day ratio of systolic and diastolic blood pressure. There was no correlation with albumin/creatinine ratio, ankle/brachial index, Cornell voltage-duration product or left ventricular mass index. In the multiple linear regression analysis, after adjusting for age, the association of glomerular filtration rate and intima-media thickness with ambulatory heart rate and its standard deviation was lost. According to the logistic regression analysis, the predictors of any target organ damage were age (OR = 1.034 and 1.033) and night/day systolic blood pressure ratio (OR = 1.425 and 1.512). Neither 24 HR nor 24 HRV reached statistical significance.
Conclusions
High ambulatory heart rate and its variability, but not clinical HR, are associated with decreased carotid intima-media thickness and a higher glomerular filtration rate, although this is lost after adjusting for age.
Trial Registration
ClinicalTrials.gov: NCT01325064
doi:10.1186/1471-2261-12-19
PMCID: PMC3326700  PMID: 22439900
Heart rate; Hypertension; Blood pressure monitoring; ambulatory; Carotid arteries; Hypertrophy; left ventricular; Kidney disease
3.  Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive 
Background
Our aim was to analyze the relationship between abdominal obesity and general obesity, with subclinical atherosclerosis, arterial stiffness and wave reflection in healthy, diabetics and hypertensive subjects.
Methods
A cross-sectional descriptive study was made of 305 individuals (diabetics 32.8%, hypertensive subjects 37.0% and healthy individuals 30.2%). Measurements: Body mass index (BMI), waist circumference (WC), body fat percentage (BFP) and waist/height ratio (WHtR). Arterial stiffness was assessed according to pulse wave velocity (PWV), intima-media thickness of the common carotid artery (C-IMT), augmentation index (central and peripheral), ankle-brachial index (ABI), and central and peripheral pulse pressure.
Results
WC and WHtR showed a positive correlation to PWV and C-IMT in the studied groups. After adjusting for age, gender, high sensitivity c-reactive protein, serum glucose and the presence of diabetes, hypertension, smoking, dyslipidemia, antidiabetic drugs, lipid-lowering drugs, and atherosclerotic plaques, it was seen that for every 0.1 point increase in WHtR, and for every cm increase in WC, the PWV increased 0.041 and 0.029 m/sec, and C-IMT increased 0.001 mm and 0.001 mm, respectively.
Conclusions
The measures of abdominal obesity (WHtR and WC) correlates better than BMI and BFP with arterial stiffness evaluated by PWV, and with subclinical atherosclerosis evaluated by C-IMT, independently of the presence of diabetes or hypertension.
Trial Registration
Clinical Trials.gov Identifier: NCT01325064
doi:10.1186/1471-2261-12-3
PMCID: PMC3395841  PMID: 22292502
4.  Ambulatory arterial stiffness indices and target organ damage in hypertension 
Background
The present study was designed to evaluate which arterial stiffness parameter - AASI or the home arterial stiffness index (HASI) - correlates best with vascular, cardiac and renal damage in hypertensive individuals.
Methods
A cross-sectional study was carried out involving 258 hypertensive patients. AASI and HASI were defined as the 1-regression slope of diastolic over systolic blood pressure readings obtained from 24-hour recordings and home blood pressure over 6 days. Renal damage was evaluated by glomerular filtration rate (GFR) and microalbuminuria; vascular damage by carotid intima-media thickness (IMT), pulse wave velocity (PWV) and ankle/brachial index (ABI); and left ventricular hypertrophy by the Cornell voltage-duration product (VDP) and the Novacode index.
Results
AASI and HASI were not correlated with microalbuminuria, however AASI and HASI- blood pressure variability ratio (BPVR) showed negative correlation with GRF. The Cornell PDV was positively correlated with AASI- BPVR-Sleep (r = 0.15, p < 0.05) and the left ventricular mass index with HASI-BPVR (r = 0.19, p < 0.01). Carotid IMT and PWV were positively correlated with all the parameters except the HASI, while ABI was negatively correlated with AASI and Awake-AASI. After adjusting for age, gender and 24 hours heart rate, statistical significance remains of the IMT with AASI, Awake AASI and AASI-BPVR. PWV with the AASI, Awake-AASI and Sleep-AASI. ABI with AASI and Awake-AASI. Odd Ratio to presence target organ damage was for AASI: 10.47(IC95% 1.29 to 65.34), Awake-AASI: 8.85(IC95% 1.10 to 71.04), Sleep-AASI: 2.19(IC95% 1.10 to 4.38) and AASI-BPVR-night: 4.09 (IC95% 1.12 to 14.92).
Conclusions
After adjusting for age, gender and 24-hour heart, the variables that best associated with the variability of IMT, PWV and ABI were AASI and Awake-AASI, and with GFR was HASI-BPVR.
doi:10.1186/1471-2261-12-1
PMCID: PMC3305545  PMID: 22284388
Ambulatory arterial stiffness index; home arterial stiffness index; ambulatory blood pressure monitoring; home blood pressure; target organ damage
5.  Improving interMediAte Risk management. MARK study 
Background
Cardiovascular risk functions fail to identify more than 50% of patients who develop cardiovascular disease. This is especially evident in the intermediate-risk patients in which clinical management becomes difficult. Our purpose is to analyze if ankle-brachial index (ABI), measures of arterial stiffness, postprandial glucose, glycosylated hemoglobin, self-measured blood pressure and presence of comorbidity are independently associated to incidence of vascular events and whether they can improve the predictive capacity of current risk equations in the intermediate-risk population.
Methods/Design
This project involves 3 groups belonging to REDIAPP (RETICS RD06/0018) from 3 Spanish regions. We will recruit a multicenter cohort of 2688 patients at intermediate risk (coronary risk between 5 and 15% or vascular death risk between 3-5% over 10 years) and no history of atherosclerotic disease, selected at random. We will record socio-demographic data, information on diet, physical activity, comorbidity and intermittent claudication. We will measure ABI, pulse wave velocity and cardio ankle vascular index at rest and after a light intensity exercise. Blood pressure and anthropometric data will be also recorded. We will also quantify lipids, glucose and glycosylated hemoglobin in a fasting blood sample and postprandial capillary glucose. Eighteen months after the recruitment, patients will be followed up to determine the incidence of vascular events (later follow-ups are planned at 5 and 10 years). We will analyze whether the new proposed risk factors contribute to improve the risk functions based on classic risk factors.
Discussion
Primary prevention of cardiovascular diseases is a priority in public health policy of developed and developing countries. The fundamental strategy consists in identifying people in a high risk situation in which preventive measures are effective and efficient. Improvement of these predictions in our country will have an immediate, clinical and welfare impact and a short term public health effect.
Trial Registration
Clinical Trials.gov Identifier: NCT01428934
doi:10.1186/1471-2261-11-61
PMCID: PMC3207912  PMID: 21992621
Risk assessment; cardiovascular diseases; primary prevention; primary health care.

Results 1-5 (5)