PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  FCGR2A and FCGR3A polymorphisms and clinical outcome in metastatic colorectal cancer patients treated with first-line 5-fluorouracil/folinic acid and oxaliplatin +/- cetuximab 
BMC Cancer  2014;14:340.
Background
Polymorphisms of genes encoding the Fcy receptors (Fc fragment of IgG receptor 2A (FCGR2A) and 3A (FCGR3A)), which influence their affinity for the Fc fragment, have been linked to the pharmacodynamics of monoclonal antibodies. Most studies have been limited by small samples sizes and have reported inconsistent associations between the FCGR2A and the FCGR3A polymorphisms and clinical outcome in metastatic colorectal cancer (mCRC) patients treated with cetuximab. We investigated the association of these polymorphisms and clinical outcome in a large cohort of mCRC patients treated with first-line 5-fluorouracil/folinic acid and oxaliplatin (Nordic FLOX) +/- cetuximab in the NORDIC-VII study (NCT00145314).
Methods
504 and 497 mCRC patients were evaluable for the FCGR2A and FCGR3A genotyping, respectively. Genotyping was performed on TaqMan ABI HT 7900 (Applied Biosystems, Foster City, CA, USA) with pre-designed SNP genotyping assays for FCGR2A (rs1801274) and FCGR3A (rs396991).
Results
The response rate for patients with the FCGR2A R/R genotype was significantly increased when cetuximab was added to Nordic FLOX (31% versus 53%, interaction P = 0.03), but was not significantly different compared to the response rate of patients with the FCGR2A H/H or H/R genotypes given the same treatment. A larger increase in response rate with the addition of cetuximab to Nordic FLOX in patients with KRAS mutated tumors and the FCGR2A R/R genotype was observed (19% versus 50%, interaction P = 0.04). None of the FCGR3A polymorphisms were associated with altered response when cetuximab was added to Nordic FLOX (interaction P = 0.63). Neither of the FCGR polymorphisms showed any significant associations with progression-free survival or overall survival.
Conclusion
Patients with KRAS mutated tumors and the FCGR2A R/R polymorphism responded poorly when treated with chemotherapy only, and experienced the most benefit of the addition of cetuximab in terms of response rate.
doi:10.1186/1471-2407-14-340
PMCID: PMC4045863  PMID: 24884501
Colorectal cancer; FCGR2A; FCGR3A; Polymorphism; Cetuximab
2.  Let-7 miRNA-binding site polymorphism in the KRAS 3′UTR; colorectal cancer screening population prevalence and influence on clinical outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin +/− cetuximab 
BMC Cancer  2012;12:534.
Background
Recent studies have reported associations between a variant allele in a let-7 microRNA complementary site (LCS6) within the 3′untranslated region (3′UTR) of KRAS (rs61764370) and clinical outcome in metastatic colorectal cancer (mCRC) patients receiving cetuximab. The variant allele has also been associated with increased cancer risk. We aimed to reveal the incidence of the variant allele in a colorectal cancer screening population and to investigate the clinical relevance of the variant allele in mCRC patients treated with 1st line Nordic FLOX (bolus 5-fluorouracil/folinic acid and oxaliplatin) +/− cetuximab.
Methods
The feasibility of the variant allele as a risk factor for CRC was investigated by comparing the LCS6 gene frequencies in 197 CRC patients, 1060 individuals with colorectal polyps, and 358 healthy controls. The relationship between clinical outcome and LCS6 genotype was analyzed in 180 mCRC patients receiving Nordic FLOX and 355 patients receiving Nordic FLOX + cetuximab in the NORDIC-VII trial (NCT00145314).
Results
LCS6 frequencies did not vary between CRC patients (23%), individuals with polyps (20%), and healthy controls (20%) (P = 0.50). No statistically significant differences were demonstrated in the NORDIC-VII cohort even if numerically increased progression-free survival (PFS) and overall survival (OS) were found in patients with the LCS6 variant allele (8.5 (95% CI: 7.3-9.7 months) versus 7.8 months (95% CI: 7.4-8.3 months), P = 0.16 and 23.5 (95% CI: 21.6-25.4 months) versus 19.5 months (95% CI: 17.8-21.2 months), P = 0.31, respectively). Addition of cetuximab seemed to improve response rate more in variant carriers than in wild-type carriers (from 35% to 57% versus 44% to 47%), however the difference was not statistically significant (interaction P = 0.16).
Conclusions
The LCS6 variant allele does not seem to be a risk factor for development of colorectal polyps or CRC. No statistically significant effect of the LCS6 variant allele on response rate, PFS or OS was found in mCRC patients treated with 1st line Nordic FLOX +/− cetuximab.
doi:10.1186/1471-2407-12-534
PMCID: PMC3526507  PMID: 23167843
Colorectal cancer; LCS6; MiRNA polymorphism; Cetuximab; Oxaliplatin; 5-fluorouracil
3.  The level of claudin-7 is reduced as an early event in colorectal carcinogenesis 
BMC Cancer  2011;11:65.
Background
Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both in vivo and in vitro. We found in an in-silico search tight co-regulation between matriptase and claudin-7 expression. We have previously shown that the matriptase expression level decreases during colorectal carcinogenesis. In the present study we investigated whether claudin-7 expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue.
Methods
The mRNA level of claudin-7 (CLDN7) was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings.
Results
A 2.7-fold reduction in the claudin-7 mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p < 0.001). Reductions in the claudin-7 mRNA levels were also detected in mild/moderate dysplasia (p < 0.001), severe dysplasia (p < 0.01) and carcinomas (p < 0.01), compared to a control sample from the same individual. The decrease at mRNA level was confirmed at the protein level by immunohistochemical stainings.
Conclusions
Our results show that the claudin-7 mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas.
doi:10.1186/1471-2407-11-65
PMCID: PMC3045986  PMID: 21310043
4.  Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis 
BMC Cancer  2009;9:201.
Background
Clinical trials where cancer patients were treated with protease inhibitors have suggested that the serine protease, prostasin, may act as a tumour suppressor. Prostasin is proteolytically activated by the serine protease, matriptase, which has a very high oncogenic potential. Prostasin is inhibited by protease nexin-1 (PN-1) and the two isoforms encoded by the mRNA splice variants of hepatocyte growth factor activator inhibitor-1 (HAI-1), HAI-1A, and HAI-1B.
Methods
Using quantitative RT-PCR, we have determined the mRNA levels for prostasin and PN-1 in colorectal cancer tissue (n = 116), severe dysplasia (n = 13), mild/moderate dysplasia (n = 93), and in normal tissue from the same individuals. In addition, corresponding tissues were examined from healthy volunteers (n = 23). A part of the cohort was further analysed for the mRNA levels of the two variants of HAI-1, here denoted HAI-1A and HAI-1B. mRNA levels were normalised to β-actin. Immunohistochemical analysis of prostasin and HAI-1 was performed on normal and cancer tissue.
Results
The mRNA level of prostasin was slightly but significantly decreased in both mild/moderate dysplasia (p < 0.001) and severe dysplasia (p < 0.01) and in carcinomas (p < 0.05) compared to normal tissue from the same individual. The mRNA level of PN-1 was more that two-fold elevated in colorectal cancer tissue as compared to healthy individuals (p < 0.001) and elevated in both mild/moderate dysplasia (p < 0.01), severe dysplasia (p < 0.05) and in colorectal cancer tissue (p < 0.001) as compared to normal tissue from the same individual. The mRNA levels of HAI-1A and HAI-1B mRNAs showed the same patterns of expression. Immunohistochemistry showed that prostasin is located mainly on the apical plasma membrane in normal colorectal tissue. A large variation was found in the degree of polarization of prostasin in colorectal cancer tissue.
Conclusion
These results show that the mRNA level of PN-1 is significantly elevated in colorectal cancer tissue. Future studies are required to clarify whether down-regulation of prostasin activity via up regulation of PN-1 is causing the malignant progression or if it is a consequence of it.
doi:10.1186/1471-2407-9-201
PMCID: PMC2717118  PMID: 19555470
5.  Collagen mRNA levels changes during colorectal cancer carcinogenesis 
BMC Cancer  2009;9:136.
Background
Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different α(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (α1/α4/α6) and type VII collagen (α1) during colorectal cancer carcinogenesis.
Methods
Using quantitative RT-PCR, we have determined the mRNA levels for α1(IV), α4(IV), α6(IV), and α1(VII) in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 20). mRNA levels were normalized to β-actin. Immunohistochemical analysis of the distributions of type IV and type VII collagens were performed on normal and affected tissues from colorectal cancer patients.
Results
The α1(IV) and α1(VII) mRNA levels were statistically significantly higher in colorectal cancer tissue (p < 0.001) as compared to corresponding tissue from healthy controls. This is an early event as tissue from adenomas also displayed a higher level. There were small changes in the levels of α4(IV). The level of α6(IV) was 5-fold lower in colorectal cancer tissue as compared to healthy individuals (p < 0.01). The localisation of type IV and type VII collagen was visualized by immunohistochemical staining.
Conclusion
Our results suggest that the down-regulation of α6(IV) mRNA coincides with the acquisition of invasive growth properties, whereas α1(IV) and α1(VII) mRNAs were up-regulated already in dysplastic tissue. There are no differences in collagen expression between tissues from healthy individuals and normal tissues from affected individuals.
doi:10.1186/1471-2407-9-136
PMCID: PMC2684122  PMID: 19422682
6.  Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas 
BMC Cancer  2007;7:228.
Background
The risk of sporadic colorectal cancer (CRC) is mainly associated with lifestyle factors, particularly dietary factors. Diets high in red meat and fat and low in fruit and vegetables are associated with an increased risk of CRC. The dietary effects may be modulated by genetic polymorphisms in biotransformation genes. In this study we aimed to evaluate the role of dietary factors in combination with genetic factors in the different stages of colorectal carcinogenesis in a Norwegian population.
Methods
We used a case-control study design (234 carcinomas, 229 high-risk adenomas, 762 low-risk adenomas and 400 controls) to test the association between dietary factors (meat versus fruit, berries and vegetables) genetic polymorphisms in biotransformation genes (GSTM1, GSTT1, GSTP1 Ile105Val, EPHX1 Tyr113His and EPHX1 His139Arg), and risk of colorectal carcinomas and adenomas. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression.
Results
A higher ratio of total meat to total fruit, berry and vegetable intake was positively associated with both high and low-risk adenomas, with approximately twice the higher risk in the 2nd quartile compared to the lowest quartile. For the high-risk adenomas this positive association was more obvious for the common allele (Tyr allele) of the EPHX1 codon 113 polymorphism. An association was also observed for the EPHX1 codon 113 polymorphism in the low-risk adenomas, although not as obvious.
Conclusion
Although, the majority of the comparison groups are not significant, our results suggest an increased risk of colorectal adenomas in individuals for some of the higher ratios of total meat to total fruit, berry and vegetable intake. In addition the study supports the notion that the biotransformation enzymes GSTM1, GSTP1 and EPHX1 may modify the effect of dietary factors on the risk of developing colorectal carcinoma and adenoma.
doi:10.1186/1471-2407-7-228
PMCID: PMC2228310  PMID: 18093316
7.  Expression of NDRG2 is down-regulated in high-risk adenomas and colorectal carcinoma 
BMC Cancer  2007;7:192.
Background
It has recently been shown that NDRG2 mRNA is down-regulated or undetectable in several human cancers and cancer cell-lines. Although the function of NDRG2 is unknown, high NDRG2 expression correlates with improved prognosis in high-grade gliomas. The aim of this study has been to examine NDRG2 mRNA expression in colon cancer. By examining affected and normal tissue from individuals with colorectal adenomas and carcinomas, as well as in healthy individuals, we aim to determine whether and at which stages NDRG2 down-regulation occurs during colonic carcinogenesis.
Methods
Using quantitative RT-PCR, we have determined the mRNA levels for NDRG2 in low-risk (n = 15) and high-risk adenomas (n = 57), colorectal carcinomas (n = 50) and corresponding normal tissue, as well as control tissue from healthy individuals (n = 15). NDRG2 levels were normalised to β-actin.
Results
NDRG2 mRNA levels were lower in colorectal carcinomas compared to normal tissue from the control group (p < 0.001). When comparing adenomas/carcinomas with adjacent normal tissue from the same individual, NDRG2 expression levels were significantly reduced in both high-risk adenoma (p < 0.001) and in colorectal carcinoma (p < 0.001). There was a trend for NDRG2 levels to decrease with increasing Dukes' stage (p < 0.05).
Conclusion
Our results demonstrate that expression of NDRG2 is down-regulated at a late stage during colorectal carcinogensis. Future studies are needed to address whether NDRG2 down-regulation is a cause or consequence of the progression of colorectal adenomas to carcinoma.
doi:10.1186/1471-2407-7-192
PMCID: PMC2099434  PMID: 17935612
8.  Increased mRNA expression levels of ERCC1, OGG1 and RAI in colorectal adenomas and carcinomas 
BMC Cancer  2006;6:208.
Background
The majority of colorectal cancer (CRC) cases develop through the adenoma-carcinoma pathway. If an increase in DNA repair expression is detected in both early adenomas and carcinomas it may indicate that low repair capacity in the normal mucosa is a risk factor for adenoma formation.
Methods
We have examined mRNA expression of two DNA repair genes, ERCC1 and OGG1 as well as the putative apoptosis controlling gene RAI, in normal tissues and lesions from 36 cases with adenomas (mild/moderat n = 21 and severe n = 15, dysplasia) and 9 with carcinomas.
Results
Comparing expression levels of ERCC1, OGG1 and RAI between normal tissue and all lesions combined yielded higher expression levels in lesions, 3.3-fold higher (P = 0.005), 5.6-fold higher(P < 3·10-5) and 7.7-fold higher (P = 0.0005), respectively. The levels of ERCC1, OGG1 and RAI expressions when comparing lesions, did not differ between adenomas and CRC cases, P = 0.836, P = 0.341 and P = 0.909, respectively. When comparing expression levels in normal tissue, the levels for OGG1 and RAI from CRC cases were significantly lower compared to the cases with adenomas, P = 0.012 and P = 0.011, respectively.
Conclusion
Our results suggest that increased expression of defense genes is an early event in the progression of colorectal adenomas to carcinomas.
doi:10.1186/1471-2407-6-208
PMCID: PMC1562435  PMID: 16914027
9.  The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals 
BMC Cancer  2006;6:176.
Background
It has recently been shown that overexpression of the serine protease, matriptase, in transgenic mice causes a dramatically increased frequency of carcinoma formation. Overexpression of HAI-1 and matriptase together changed the frequency of carcinoma formation to normal. This suggests that the ratio of matriptase to HAI-1 influences the malignant progression. The aim of this study has been to determine the ratio of matriptase to HAI-1 mRNA expression in affected and normal tissue from individuals with colorectal cancer adenomas and carcinomas as well as in healthy individuals, in order to determine at which stages a dysregulated ratio of matriptase/HAI-1 mRNA is present during carcinogenesis.
Methods
Using quantitative RT-PCR, we have determined the mRNA levels for matriptase and HAI-1 in colorectal cancer tissue (n = 9), severe dysplasia (n = 15), mild/moderate dysplasia (n = 21) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 10). Matriptase and HAI-1 mRNA levels were normalized to β-actin.
Results
Matriptase mRNA level was lower in carcinomas compared to normal tissue from healthy individuals (p < 0.01). In accordance with this, the matriptase mRNA level was also lower in adenomas/carcinomas combined as compared to their adjacent normal tissue (p < 0.01). HAI-1 mRNA levels in both normal and affected tissue from individuals with severe dysplasia or carcinomas and in affected tissue with mild/moderate dysplasia were all significantly lower than mRNA levels observed in corresponding tissue from healthy control individuals. HAI-1 mRNA was lower in carcinomas as compared to normal tissue from healthy individuals (p < 0.001). HAI-1 mRNA levels were significantly lower in tissue displaying mild/moderate (p < 0.001) and severe (p < 0.01) dysplasia compared to normal tissue from the same patients. Both adenomas and carcinomas displayed a significantly different matriptase/HAI-1 mRNA ratio than corresponding normal tissue from healthy control individuals (p < 0.05). In addition statistically significant difference (p < 0.001) could be observed between mild/moderate and severe adenomas and their adjacent normal tissue.
Conclusion
Our results show that dysregulation of the matriptase/HAI-1 mRNA ratio occurs early during carcinogenesis. Future studies are required to clarify whether the dysregulated matriptase/HAI-1 ratio was causing the malignant progression or is a consequence of the same.
doi:10.1186/1471-2407-6-176
PMCID: PMC1525198  PMID: 16820046
10.  Effects of polymorphisms in ERCC1, ASE-1 and RAI on the risk of colorectal carcinomas and adenomas: a case control study 
BMC Cancer  2006;6:175.
Background
The risk of sporadic colorectal cancer is mainly associated with lifestyle factors and may be modulated by several genetic factors of low penetrance. Genetic variants represented by single nucleotide polymorphisms in genes encoding key players in the adenoma carcinoma sequence may contribute to variation in susceptibility to colorectal cancer. In this study, we aimed to evaluate whether the recently identified haplotype encompassing genes of DNA repair and apoptosis, is associated with increased risk of colorectal adenomas and carcinomas.
Methods
We used a case-control study design (156 carcinomas, 981 adenomas and 399 controls) to test the association between polymorphisms in the chromosomal region 19q13.2-3, encompassing the genes ERCC1, ASE-1 and RAI, and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (CI) were estimated by binary logistic regression model adjusting for age and gender.
Results
The ASE-1 polymorphism was associated with an increased risk of adenomas, OR of 1.39 (95% CI 1.06–1.81), which upon stratification was apparent among women only, OR of 1.66 (95% CI 1.15–2.39). The RAI polymorphism showed a trend towards risk reduction for both adenomas (OR of 0.70, 95% CI 0.49–1.01) and carcinomas (OR of 0.49, 95% CI 0.21–1.13) among women, although not significant. Women who were homozygous carriers of the high risk haplotype had an increased risk of colorectal cancer, OR of 2.19 (95% CI 0.95–5.04) compared to all non-carriers although the estimate was not statistically significant.
Conclusion
We found no evidence that the studied polymorphisms were associated with risk of adenomas or colorectal cancer among men, but we found weak indications that the chromosomal region may influence risk of colorectal cancer and adenoma development in women.
doi:10.1186/1471-2407-6-175
PMCID: PMC1533843  PMID: 16817948
11.  Association between cigarette smoking, APC mutations and the risk of developing sporadic colorectal adenomas and carcinomas 
BMC Cancer  2006;6:71.
Background
The association between colorectal cancer (CRC) and smoking has not been consistent. Incomplete smoking history and association to a specific subset of CRC tumors have been proposed as explanations. The adenomatous polyposis coli (APC) gene has been reported to have a "gatekeeper" function in the colonic mucosa.
Methods
To evaluate the hypothesis that cigarette smoking is associated with adenoma and carcinoma development and further to investigate whether this association is due to mutations in the APC gene, we used a study population consisting of 133 cases (45 adenomas and 88 carcinomas) and 334 controls. All tumors were sequenced in the mutation cluster region (MCR) of the APC gene. Cases and controls were drawn from a homogeneous cohort of Norwegian origin.
Results
The mutational spectra of the APC gene revealed no difference in frequencies of mutations in cases based on ever and never smoking status. An overall case-control association was detected for adenomas and "ever smoking" OR = 1.73 (95% CI 0.83–3.58). For CRC cases several smoking parameters for dose and duration were used. We detected an association for all smoking parameters and "duration of smoking > 30 years", yielded a statistically significant OR = 2.86 (1.06–7.7). When cases were divided based on APC truncation mutation status, an association was detected in adenomas without APC mutation in relation to "ever smoking", with an OR = 3.97 (1.26–12.51). For CRC cases without APC mutation "duration of smoking > 30 years", yielded a statistically significant OR = 4.06 (1.20–13.7). The smoking parameter "starting smoking ≥ 40 years ago" was only associated with CRC cases with APC mutations, OR = 2.0 (0.34–11.95). A case-case comparison revealed similar findings for this parameter, OR = 2.24 (0.73–6.86).
Conclusion
Our data suggest an association between smoking and adenoma and CRC development. This association was strongest for cases without APC truncation mutation. This may implicate other factors in development of these tumors. The association detected between smoking and CRC cases with APC mutation was in relationship to the smoking parameter "starting smoking ≥ 40 years ago", a time period long enough to proceed CRC initiation.
doi:10.1186/1471-2407-6-71
PMCID: PMC1475604  PMID: 16545110
12.  Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study 
BMC Cancer  2006;6:67.
Background
Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Less is known about other DNA repair pathways in colorectal carcinogenesis. In this study we have focused on the XRCC1, XRCC3 and XPD genes, involved in base excision repair, homologous recombinational repair and nucleotide excision repair, respectively.
Methods
We used a case-control study design (157 carcinomas, 983 adenomas and 399 controls) to test the association between five polymorphisms in these DNA repair genes (XRCC1 Arg194Trp, Arg280His, Arg399Gln, XRCC3 Thr241Met and XPD Lys751Gln), and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression model adjusting for age, gender, cigarette smoking and alcohol consumption.
Results
The XRCC1 280His allele was associated with an increased risk of adenomas (OR 2.30, 95% CI 1.19–4.46). The XRCC1 399Gln allele was associated with a reduction of risk of high-risk adenomas (OR 0.62, 95% CI 0.41–0.96). Carriers of the variant XPD 751Gln allele had an increased risk of low-risk adenomas (OR 1.40, 95% CI 1.03–1.89), while no association was found with risk of carcinomas.
Conclusion
Our results suggest an increased risk for advanced colorectal neoplasia in individuals with the XRCC1 Arg280His polymorphism and a reduced risk associated with the XRCC1 Arg399Gln polymorphism. Interestingly, individuals with the XPD Lys751Gln polymorphism had an increased risk of low-risk adenomas. This may suggest a role in regression of adenomas.
doi:10.1186/1471-2407-6-67
PMCID: PMC1458350  PMID: 16542436

Results 1-12 (12)