PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  IMRT and carbon ion boost for malignant salivary gland tumors: interim analysis of the COSMIC trial 
BMC Cancer  2012;12:163.
Background
The COSMIC trial is designed to evaluate toxicity in dose-escalated treatment with intensity-modulated radiotherapy (IMRT) and carbon ion boost for malignant salivary gland tumors (MSGT) of the head and neck including patients with inoperable/ incompletely resected MSGTs (R2-group) and completely resected tumors plus involved margins or perineural spread (R1-group).
Methods
COSMIC is a prospective phase II trial of IMRT (25 × 2 Gy) and carbon ion boost (8 × 3 GyE). Primary endpoint is mucositis CTC°III, secondary endpoints are local control, progression-free survival, and toxicity. Evaluation of disease response is carried out according to the Response Evaluation Criteria in Solid Tumors (RECIST); toxicity is assessed using NCI CTC v 3.0.
Results
Twenty-nine patients were recruited from 07/2010 to 04/2011, all patients have at least completed first follow-up. Sixteen patients were treated in the R2-group, 13 in the R1-group. All treatments were completed as planned and well tolerated, mucositis CTC grade III was 25% (R2) and 15.4% (R1), no dysphagia CTC grade III was observed, no feeding tubes were necessary. Side-effects rapidly resolved, only 4 patients (13.8%) reported xerostomia grade II at first follow-up. Overall response rate (complete and partial response) according to RECIST in the R2-group is 68.8% at 6–8 weeks post treatment, all patients within this group showed radiological signs of treatment response.
Conclusion
No unexpected toxicity was observed, mucositis rates and other side effects do not differ between patients with visible residual tumor and macroscopically completely resected tumors. Initial treatment response is promising though longer follow-up is needed to assess local control.
Trial registration
Clinical trial identifier NCT 01154270
doi:10.1186/1471-2407-12-163
PMCID: PMC3407497  PMID: 22551422
2.  Isometric muscle training of the spine musculature in patients with spinal bony metastases under radiation therapy 
BMC Cancer  2011;11:482.
Background
Osseous metastatic involvement of the spinal column affects many patients with a primary tumour disease of all entities. The consequences are pain both at rest and under exertion, impairments in going about day-to-day activities, diminished performance, the risk of pathological fractures, and neurological deficits. Palliative percutaneous radiotherapy is one of the therapeutical options available in this connection. The aim of this explorative study is to investigate the feasibility of muscle-training exercises and to evaluate the progression- and fracture-free survival time and the improvement of bone density, as well as to assess other clinical parameters such as pain, quality of life, and fatigue as secondary endpoints.
Methods/Design
This study is a prospective, randomized, monocentre, controlled explorative intervention study in the parallel-group design to determine the multidimensional effects of a course of exercises at first under physiotherapeutic instruction and subsequently performed by the patients independently for strengthening the paravertebral muscles of patients with metastases of the vertebral column parallel to their percutaneous radiotherapy. On the days of radiation treatment the patients in the control group shall be given physical treatment in the form of respiratory therapy and the so-called "hot roll". The patients will be randomized into one of the two groups: differentiated muscle training or physiotherapy with thirty patients in each group.
Discussion
The aim of the study is to evaluate the feasibility of the training programme described here. Progression-free and fracture-free survival, improved response to radiotherapy by means of bone density, and clinical parameters such as pain, quality of life, and fatigue constitute secondary study objectives.
Trial Registration
ClinicalTrials.gov: NCT01409720
doi:10.1186/1471-2407-11-482
PMCID: PMC3229663  PMID: 22070722
3.  Simultaneous integrated boost for adjuvant treatment of breast cancer- intensity modulated vs. conventional radiotherapy: The IMRT-MC2 trial 
BMC Cancer  2011;11:249.
Background
Radiation therapy is an essential modality in the treatment of breast cancer. Addition of radiotherapy to surgery has significantly increased local control and survival rates of the disease. However, radiotherapy is also associated with side effects, such as tissue fibrosis or enhanced vascular morbidity. Modern radiotherapy strategies, such as intensity modulated radiotherapy (IMRT), can shorten the overall treatment time by integration of the additional tumor bed boost significantly. To what extent this might be possible without impairing treatment outcome and cosmetic results remains to be clarified.
Methods/Design
The IMRT-MC2 study is a prospective, two armed, multicenter, randomized phase-III-trial comparing intensity modulated radiotherapy with integrated boost to conventional radiotherapy with consecutive boost in patients with breast cancer after breast conserving surgery. 502 patients will be recruited and randomized into two arms: patients in arm A will receive IMRT in 28 fractions delivering 50.4 Gy to the breast and 64.4 Gy to the tumor bed by integrated boost, while patients in arm B will receive conventional radiotherapy of the breast in 28 fractions to a dose of 50.4 Gy and consecutive boost in 8 fractions to a total dose of 66.4 Gy.
Discussion
Primary objectives of the study are the evaluation of the cosmetic results 6 weeks and 2 years post treatment and the 2- and 5-year local recurrence rates for the two different radiotherapy strategies. Secondary objectives are long term overall survival, disease free survival and quality of life.
Trial Registration
ClinicalTrials.gov Protocol ID: NCT01322854.
doi:10.1186/1471-2407-11-249
PMCID: PMC3150341  PMID: 21676232
4.  Treatment of malignant sinonasal tumours with intensity-modulated radiotherapy (IMRT) and carbon ion boost (C12) 
BMC Cancer  2011;11:190.
Background
Most patients with cancers of the nasal cavity or paranasal sinuses are candidates of radiation therapy either due incomplete resection or technical inoperability. Local control in this disease is dose dependent but technically challenging due to close proximity of critical organs and accompanying toxicity. Modern techniques such as IMRT improve toxicity rates while local control remains unchanged. Raster-scanned carbon ion therapy with highly conformal dose distributions may allow higher doses at comparable or reduced side-effects.
Methods/design
The IMRT-HIT-SNT trial is a prospective, mono-centric, phase II trial evaluating toxicity (primary endpoint: mucositis ≥ CTCAE°III) and efficacy (secondary endpoint: local control, disease-free and overall survival) in the combined treatment with IMRT and carbon ion boost in 30 patients with histologically proven (≥R1-resected or inoperable) adeno-/or squamous cell carcinoma of the nasal cavity or paransal sinuses. Patients receive 24 GyE carbon ions (8 fractions) and IMRT (50 Gy at 2.0 Gy/fraction).
Discussion
The primary objective of IMRT-HIT-SNT is to evaluate toxicity and feasibility of the proposed treatment in sinonasal malignancies.
Trial Registration
Clinical trial identifier NCT 01220752
doi:10.1186/1471-2407-11-190
PMCID: PMC3112165  PMID: 21600049
5.  Phase II study of induction chemotherapy with TPF followed by radioimmunotherapy with Cetuximab and intensity-modulated radiotherapy (IMRT) in combination with a carbon ion boost for locally advanced tumours of the oro-, hypopharynx and larynx - TPF-C-HIT 
BMC Cancer  2011;11:182.
Background
Long-term locoregional control in locally advanced squamous cell carcinoma of the head and neck (SCCHN) remains challenging. While recent years have seen various approaches to improve outcome by intensification of treatment schedules through introduction of novel induction and combination chemotherapy regimen and altered fractionation regimen, patient tolerance to higher treatment intensities is limited by accompanying side-effects. Combined radioimmunotherapy with cetuximab as well as modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT) and carbon ion therapy (C12) are able to limit toxicity while maintaining treatment effects. In order to achieve maximum efficacy with yet acceptable toxicity, this sequential phase II trial combines induction chemotherapy with docetaxel, cisplatin, and 5-FU (TPF) followed by radioimmunotherapy with cetuximab as IMRT plus carbon ion boost. We expect this approach to result in increased cure rates with yet manageable accompanying toxicity.
Methods/design
The TPF-C-HIT trial is a prospective, mono-centric, open-label, non-randomized phase II trial evaluating efficacy and toxicity of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 50 patients with histologically proven locally advanced SCCHN following TPF induction chemotherapy. Patients receive 24 GyE carbon ions (8 fractions) and 50 Gy IMRT (2.0 Gy/fraction) in combination with weekly cetuximab throughout radiotherapy. Primary endpoint is locoregional control at 12 months, secondary endpoints are disease-free survival, progression-free survival, overall survival, acute and late radiation effects as well as any adverse events of the treatment as well as quality of life (QoL) analyses.
Discussion
The primary objective of TPF-C-HIT is to evaluate efficacy and toxicity of cetuximab in combination with combined IMRT/carbon ion therapy following TPF induction in locally advanced SCCHN.
Trial Registration
Clinical Trial Identifier: NCT01245985 (clinicaltrials.gov)
EudraCT number: 2009 - 016489- 10
doi:10.1186/1471-2407-11-182
PMCID: PMC3118195  PMID: 21595970
6.  Combined treatment of adenoid cystic carcinoma with cetuximab and IMRT plus C12 heavy ion boost: ACCEPT [ACC, Erbitux® and particle therapy] 
BMC Cancer  2011;11:70.
Background
Local control in adjuvant/definitive RT of adenoid cystic carcinoma (ACC) is largely dose-dependent leading to the establishment of particle therapy in this indication. However, even modern techniques leave space for improvement of local control by intensification of local treatment. Radiation sensitization by exploitation of high EGFR-expression in ACC with the EGFR receptor antibody cetuximab seems promising.
Methods/design
The ACCEPT trial is a prospective, mono-centric, phase I/II trial evaluating toxicity (primary endpoint: acute and late effects) and efficacy (secondary endpoint: local control, distant control, disease-free survival, overall survival) of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 49 patients with histologically proven (≥R1-resected, inoperable or Pn+) ACC. Patients receive 18 GyE carbon ions (6 fractions) and 54 Gy IMRT (2.0 Gy/fraction) in combination with weekly cetuximab throughout radiotherapy.
Discussion
The primary objective of ACCEPT is to evaluate toxicity and feasibility of cetuximab and particle therapy in adenoid cystic carcinoma.
Trial Registration
Clinical Trial Identifier: NCT 01192087
EudraCT number: 2010 - 022425 - 15
doi:10.1186/1471-2407-11-70
PMCID: PMC3042975  PMID: 21320355
7.  Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT) in combination with cetuximab and chemotherapy: the REACH protocol 
BMC Cancer  2010;10:651.
Background
Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival), combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux®). Radiation therapy (RT) is carried out as intensity-modulated RT (IMRT) to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues.
Methods/Design
The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU) and the monoclonal epidermal growth factor-receptor (EGFR) antibody cetuximab (Erbitux®) as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx.
Patients receive weekly chemotherapy infusions in the 1st and 5th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16) to a total dose of 69,9 Gy.
Discussion
Primary endpoint of the trial is local-regional control (LRC). Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer.
Trial registration
ISRCTN87356938
doi:10.1186/1471-2407-10-651
PMCID: PMC3001721  PMID: 21108850
8.  Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study HIT-1-Study 
BMC Cancer  2010;10:607.
Background
Chordomas of the skull base are relative rare lesions of the bones. Surgical resection is the primary treatment standard, though complete resection is nearly impossible due to close proximity to critical and hence also dose limiting organs for radiation therapy. Level of recurrence after surgery alone is comparatively high, so adjuvant radiation therapy is very important for the improvement of local control rates. Proton therapy is the gold standard in the treatment of skull base chordomas. However, high-LET beams such as carbon ions theoretically offer biologic advantages by enhanced biologic effectiveness in slow-growing tumors.
Methods/design
This clinical study is a prospective randomised phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie centre (HIT) and is a monocentric study.
Patients with skull base chordoma will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume delineation will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV in carbon ion treatment (accelerated dose) will be 63 Gy E ± 5% and 72 Gy E ± 5% (standard dose) in proton therapy respectively. Local-progression free survival (LPFS) will be analysed as primary end point. Toxicity and overall survival are the secondary end points. Additional examined parameters are patterns of recurrence, prognostic factors and plan quality analysis.
Discussion
Up until now it was impossible to compare two different particle therapies, i.e. protons and carbon ions directly at the same facility.
The aim of this study is to find out, whether the biological advantages of carbon ion therapy can also be clinically confirmed and translated into the better local control rates in the treatment of skull base chordomas.
Trial registration
ClinicalTrials.gov identifier: NCT01182779
doi:10.1186/1471-2407-10-607
PMCID: PMC2988755  PMID: 21054824
9.  Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study 
BMC Cancer  2010;10:606.
Background
Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer) beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours.
Methods/Design
The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT) centre as monocentric trial.
Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume) in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose) in proton therapy respectively. The 5 year local-progression free survival (LPFS) rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points.
Discussion
Up to now it was impossible to compare two different particle therapies, i.e. protons and carbon ions, directly at the same facility in connection with the treatment of low grade skull base chondrosarcomas.
This trial is a phase III study to demonstrate that carbon ion radiotherapy (experimental treatment) is not relevantly inferior and at least as good as proton radiotherapy (standard treatment) with respect to 5 year LPFS in the treatment of chondrosarcomas. Additionally, we expect less toxicity in the carbon ion treatment arm.
Trial Registration
ClinicalTrials.gov identifier: NCT01182753
doi:10.1186/1471-2407-10-606
PMCID: PMC2991309  PMID: 21050498
10.  Combined treatment of malignant salivary gland tumours with intensity-modulated radiation therapy (IMRT) and carbon ions: COSMIC 
BMC Cancer  2010;10:546.
Background
Local control in malignant salivary gland tumours is dose dependent. High local control rates in adenoid cystic carcinomas could be achieved by highly conformal radiotherapy techniques and particle (neutron/carbon ion) therapy. Considering high doses are needed to achieve local control, all malignant salivary gland tumours probably profit from the use of particle therapy, which in case of carbon ion treatment, has been shown to be accompanied by only mild side-effects.
Methods/design
The COSMIC trial is a prospective, mono-centric, phase II trial evaluating toxicity (primary endpoint: mucositis ≥ CTCAE°3) and efficacy (secondary endpoint: local control, disease-free survival) in the combined treatment with IMRT and carbon ion boost in 54 patients with histologically proved (≥R1-resected, inoperable or Pn+) salivary gland malignancies. Patients receive 24 GyE carbon ions (8 fractions) and IMRT (50 Gy at 2.0 Gy/fraction).
Discussion
The primary objective of COSMIC is to evaluate toxicity and feasibility of the proposed treatment in all salivary gland malignancies.
Trial Registration
Clinical trial identifier NCT 01154270
doi:10.1186/1471-2407-10-546
PMCID: PMC2958954  PMID: 20937120
11.  Adjuvant whole abdominal intensity modulated radiotherapy (IMRT) for high risk stage FIGO III patients with ovarian cancer (OVAR-IMRT-01) – Pilot trial of a phase I/II study: study protocol 
BMC Cancer  2007;7:227.
Background
The prognosis for patients with advanced epithelial ovarian cancer remains poor despite aggressive surgical resection and platinum-based chemotherapy. More than 60% of patients will develop recurrent disease, principally intraperitoneal, and die within 5 years. The use of whole abdominal irradiation (WAI) as consolidation therapy would appear to be a logical strategy given its ability to sterilize small tumour volumes. Despite the clinically proven efficacy of whole abdominal irradiation, the use of radiotherapy in ovarian cancer has profoundly decreased mainly due to high treatment-related toxicity. Modern intensity-modulated radiation therapy (IMRT) could allow to spare kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose.
Methods/Design
The OVAR-IMRT-01 study is a single center pilot trial of a phase I/II study. Patients with advanced ovarian cancer stage FIGO III (R1 or R2< 1 cm) after surgical resection and platinum-based chemotherapy will be treated with whole abdomen irradiation as consolidation therapy using intensity modulated radiation therapy (IMRT) to a total dose of 30 Gy in 1.5 Gy fractions. A total of 8 patients will be included in this trial. For treatment planning bone marrow, kidneys, liver, spinal cord, vertebral bodies and pelvic bones are defined as organs at risk. The planning target volume includes the entire peritoneal cavity plus pelvic and para-aortic node regions.
Discussion
The primary endpoint of the study is the evaluation of the feasibility of intensity-modulated WAI and the evaluation of the study protocol. Secondary endpoint is evaluation of the toxicity of intensity modulated WAI before continuing with the phase I/II study. The aim is to explore the potential of IMRT as a new method for WAI to decrease the dose to kidneys, liver, bone marrow while covering the peritoneal cavity with a homogenous dose, and to implement whole abdominal intensity-modulated radiotherapy into the adjuvant multimodal treatment concept of advanced ovarian cancer FIGO stage III.
doi:10.1186/1471-2407-7-227
PMCID: PMC2212657  PMID: 18093313

Results 1-11 (11)