PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Clinical Phase I/II trial to Investigate Preoperative Dose-Escalated Intensity-Modulated Radiation Therapy (IMRT) and Intraoperative Radiation Therapy (IORT) in patients with retroperitoneal soft tissue sarcoma: interim analysis 
BMC Cancer  2014;14(1):617.
Background
To report an unplanned interim analysis of a prospective, one-armed, single center phase I/II trial (NCT01566123).
Methods
Between 2007 and 2013, 27 patients (pts) with primary/recurrent retroperitoneal sarcomas (size > 5 cm, M0, at least marginally resectable) were enrolled. The protocol attempted neoadjuvant IMRT using an integrated boost with doses of 45–50 Gy to PTV and 50–56 Gy to GTV in 25 fractions, followed by surgery and IOERT (10–12 Gy). Primary endpoint was 5-year-LC, secondary endpoints included PFS, OS, resectability, and acute/late toxicity. The majority of patients showed high grade lesions (FNCLCC G1:18%, G2:52%, G3:30%), predominantly liposarcomas (70%). Median tumor size was 15 cm (6–31).
Results
Median follow-up was 33 months (5–75). Neoadjuvant IMRT was performed as planned (median dose 50 Gy, 26–55) in all except 2 pts (93%). Gross total resection was feasible in all except one patient. Final margin status was R0 in 6 (22%) and R1 in 20 pts (74%). Contiguous-organ resection was needed in all grossly resected patients. IOERT was performed in 23 pts (85%) with a median dose of 12 Gy (10–20 Gy).
We observed 7 local recurrences, transferring into estimated 3- and 5-year-LC rates of 72%. Two were located outside the EBRT area and two were observed after more than 5 years. Locally recurrent situation had a significantly negative impact on local control. Distant failure was found in 8 pts, resulting in 3- and 5-year-DC rates of 63%. Patients with leiomyosarcoma had a significantly increased risk of distant failure. Estimated 3- and 5-year-rates were 40% for PFS and 74% for OS. Severe acute toxicity (grade 3) was present in 4 pts (15%). Severe postoperative complications were found in 9 pts (33%), of whom 2 finally died after multiple re-interventions. Severe late toxicity (grade 3) was scored in 6% of surviving patients after 1 year and none after 2 years.
Conclusion
Combination of neoadjuvant IMRT, surgery and IOERT is feasible with acceptable toxicity and yields good results in terms of LC and OS in patients with high-risk retroperitoneal sarcomas. Long term follow-up seems mandatory given the observation of late recurrences. Accrual of patients will be continued with extended follow-up.
Trial registration
NCT01566123.
doi:10.1186/1471-2407-14-617
PMCID: PMC4156610  PMID: 25163595
2.  Excellent local control with IOERT and postoperative EBRT in high grade extremity sarcoma: results from a subgroup analysis of a prospective trial 
BMC Cancer  2014;14:350.
Background
To report the results of a subgroup analysis of a prospective phase II trial focussing on radiation therapy and outcome in patients with extremity soft tissue sarcomas (STS).
Methods
Between 2005 and 2010, 50 patients (pts) with high risk STS (size ≥ 5 cm, deep/extracompartimental location, grade II-III (FNCLCC)) were enrolled. The protocol comprised 4 cycles of neoadjuvant chemotherapy with EIA (etoposide, ifosfamide and doxorubicin), definitive surgery with IOERT, postoperative EBRT and 4 adjuvant cycles of EIA. 34 pts, who suffered from extremity tumors and received radiation therapy after limb-sparing surgery, formed the basis of this subgroup analysis.
Results
Median follow-up from inclusion was 48 months in survivors. Margin status was R0 in 30 pts (88%) and R1 in 4 pts (12%). IOERT was performed as planned in 31 pts (91%) with a median dose of 15 Gy, a median electron energy of 6 MeV and a median cone size of 9 cm. All patients received postoperative EBRT with a median dose of 46 Gy after IOERT or 60 Gy without IOERT. Median time from surgery to EBRT and median EBRT duration was 36 days, respectively. One patient developed a local recurrence while 11 patients showed nodal or distant failures. The estimated 5-year rates of local control, distant control and overall survival were 97%, 66% and 79%, respectively. Postoperative wound complications were found in 7 pts (20%), resulting in delayed EBRT (>60 day interval) in 3 pts. Acute radiation toxicity mainly consisted of radiation dermatitis (grade II: 24%, no grade III reactions). 4 pts developed grade I/II radiation recall dermatitis during adjuvant chemotherapy, which resolved during the following cycles. Severe late toxicity was observed in 6 pts (18%). Long-term limb preservation was achieved in 32 pts (94%) with good functional outcome in 81%.
Conclusion
Multimodal therapy including IOERT and postoperative EBRT resulted in excellent local control and good overall survival in patients with high risk STS of the extremities with acceptable acute and late radiation side effects. Limb preservation with good functional outcome was achieved in the majority of patients.
Trial registration
ClinicalTrials.gov NCT01382030, EudraCT 2004-002501-72, 17.06.2011
doi:10.1186/1471-2407-14-350
PMCID: PMC4032585  PMID: 24885755
Soft tissue sarcoma; Extremity; Neoadjuvant chemotherapy; Intraoperative radiation therapy; Postoperative radiation therapy; Prospective trial
3.  Intraoperative Electron Radiation Therapy (IOERT) in the management of locally recurrent rectal cancer 
BMC Cancer  2012;12:592.
Background
To evaluate disease control, overall survival and prognostic factors in patients with locally recurrent rectal cancer after IOERT-containing multimodal therapy.
Methods
Between 1991 and 2006, 97 patients with locally recurrent rectal cancer have been treated with surgery and IOERT. IOERT was preceded or followed by external beam radiation therapy (EBRT) in 54 previously untreated patients (median dose 41.4 Gy) usually combined with 5-Fluouracil-based chemotherapy (89%). IOERT was delivered via cylindric cones with doses of 10–20 Gy. Adjuvant CHT was given only in a minority of patients (34%). Median follow-up was 51 months.
Results
Margin status was R0 in 37%, R1 in 33% and R2 in 30% of the patients. Neoadjuvant EBRT resulted in significantly increased rates of free margins (52% vs. 24%). Median overall survival was 39 months. Estimated 5-year rates for central control (inside the IOERT area), local control (inside the pelvis), distant control and overall survival were 54%, 41%, 40% and 30%. Resection margin was the strongest prognostic factor for overall survival (3-year OS of 80% (R0), 37% (R1), 35% (R2)) and LC (3-year LC 82% (R0), 41% (R1), 18% (R2)) in the multivariate model. OS was further significantly affected by clinical stage at first diagnosis and achievement of local control after treatment in the univariate model. Distant failures were found in 46 patients, predominantly in the lung. 90-day postoperative mortality was 3.1%.
Conclusion
Long term OS and LC can be achieved in a substantial proportion of patients with recurrent rectal cancer using a multimodality IOERT-containing approach, especially in case of clear margins. LC and OS remain limited in patients with incomplete resection. Preoperative re-irradiation and adjuvant chemotherapy may be considered to improve outcome.
doi:10.1186/1471-2407-12-592
PMCID: PMC3557137  PMID: 23231663
Recurrent; Rectal cancer; IOERT
4.  Aggressive local treatment containing intraoperative radiation therapy (IORT) for patients with isolated local recurrences of pancreatic cancer: a retrospective analysis 
BMC Cancer  2012;12:295.
Background
To evaluate the use of intraoperative radiation therapy (IORT) in the multimodality treatment of patients with isolated local recurrences of pancreatic cancer.
Methods
We retrospectively analyzed 36 patients with isolated local recurrences of pancreatic cancer who have been treated with a combination of surgery, IORT and EBRT. Median time from initial treatment to recurrence was 20 months. All patients were surgically explored. In 18 patients a gross total resection was achieved, whereas the other half received only debulking or no resection at all. All patients received IORT with a median dose of 15 Gy. Additional EBRT was applied to 31 patients with a median dose of 45 Gy, combined with concurrent, mainly gemcitabine-based chemotherapy.
Results
Median follow-up in surviving patients was 23 months. Local progression was found in 6 patients after a median time of 17 months, resulting in estimated 1- and 2-year local control rates of 91% and 67%, respectively. Distant failure was observed in 23 patients, mainly in liver or peritoneal space. The median estimated progression-free survival was 9 months with 1- and 2-year rates of 40% and 26%, respectively. We found an encouraging estimated median overall survival of 19 months, transferring into 1- and 2-year rates of 66% and 45%. Notably 6 of 36 patients (17%) lived for more than 3 years. Severe postoperative complications were found in 3 and chemoradiation-related grade III toxicity in 6 patients. No severe IORT related toxicity was observed.
Conclusion
Combination of surgery, IORT and EBRT in patients with isolated local recurrences of pancreatic cancer resulted in encouraging local control and overall survival in our cohort with acceptable toxicity. Our approach seems to be superior to palliative chemotherapy or chemoradiation alone and should be further investigated in a prospective setting specifically addressing isolated local recurrences of pancreatic cancer.
doi:10.1186/1471-2407-12-295
PMCID: PMC3414804  PMID: 22809267
Pancreatic cancer; Isolated local recurrence; IORT
5.  A Clinical phase I/II trial to investigate preoperative dose-escalated intensity-modulated radiation therapy (IMRT) and intraoperative radiation therapy (IORT) in patients with retroperitoneal soft tissue sarcoma 
BMC Cancer  2012;12:287.
Background
Local control rates in patients with retroperitoneal soft tissue sarcoma (RSTS) remain disappointing even after gross total resection, mainly because wide margins are not achievable in the majority of patients. In contrast to extremity sarcoma, postoperative radiation therapy (RT) has shown limited efficacy due to its limitations in achievable dose and coverage. Although Intraoperative Radiation Therapy (IORT) has been introduced in some centers to overcome the dose limitations and resulted in increased outcome, local failure rates are still high even if considerable treatment related toxicity is accepted. As postoperative administration of RT has some general disadvantages, neoadjuvant approaches could offer benefits in terms of dose escalation, target coverage and reduction of toxicity, especially if highly conformal techniques like intensity-modulated radiation therapy (IMRT) are considered.
Methods/design
The trial is a prospective, one armed, single center phase I/II study investigating a combination of neoadjuvant dose-escalated IMRT (50–56 Gy) followed by surgery and IORT (10–12 Gy) in patients with at least marginally resectable RSTS. The primary objective is the local control rate after five years. Secondary endpoints are progression-free and overall survival, acute and late toxicity, surgical resectability and patterns of failure. The aim of accrual is 37 patients in the per-protocol population.
Discussion
The present study evaluates combined neoadjuvant dose-escalated IMRT followed by surgery and IORT concerning its value for improved local control without markedly increased toxicity.
Trial registration
NCT01566123
doi:10.1186/1471-2407-12-287
PMCID: PMC3495760  PMID: 22788989
6.  Clinical phase I/II trial to investigate neoadjuvant intensity-modulated short term radiation therapy (5 × 5 gy) and intraoperative radiation therapy (15 gy) in patients with primarily resectable pancreatic cancer - NEOPANC 
BMC Cancer  2012;12:112.
Background
The current standard treatment, at least in Europe, for patients with primarily resectable tumors, consists of surgery followed by adjuvant chemotherapy. But even in this prognostic favourable group, long term survival is disappointing because of high local and distant failure rates. Postoperative chemoradiation has shown improved local control and overalls survival compared to surgery alone but the value of additional radiation has been questioned in case of adjuvant chemotherapy. However, there remains a strong rationale for the addition of radiation therapy considering the high rates of microscopically incomplete resections after surgery. As postoperative administration of radiation therapy has some general disadvantages, neoadjuvant and intraoperative approaches theoretically offer benefits in terms of dose escalation, reduction of toxicity and patients comfort especially if hypofractionated regimens with highly conformal techniques like intensity-modulated radiation therapy are considered.
Methods/Design
The NEOPANC trial is a prospective, one armed, single center phase I/II study investigating a combination of neoadjuvant short course intensity-modulated radiation therapy (5 × 5 Gy) in combination with surgery and intraoperative radiation therapy (15 Gy), followed by adjuvant chemotherapy according to the german treatment guidelines, in patients with primarily resectable pancreatic cancer. The aim of accrual is 46 patients.
Discussion
The primary objectives of the NEOPANC trial are to evaluate the general feasibility of this approach and the local recurrence rate after one year. Secondary endpoints are progression-free survival, overall survival, acute and late toxicity, postoperative morbidity and mortality and quality of life.
Trial registration
NCT01372735.
doi:10.1186/1471-2407-12-112
PMCID: PMC3323416  PMID: 22443802
7.  A randomized controlled trial to investigate the influence of low dose radiotherapy on immune stimulatory effects in liver metastases of colorectal cancer 
BMC Cancer  2011;11:419.
Background
Insufficient migration and activation of tumor specific effector T cells in the tumor is one of the main reasons for inadequate host anti-tumor immune response. External radiation seems to induce inflammation and activate the immune response. This phase I/II clinical trial aims to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with colorectal liver metastases.
Methods/Design
This is an investigator-initiated, prospective randomised, 4-armed, controlled Phase I/II trial. Patients undergoing elective hepatic resection due to colorectal cancer liver metastasis will be enrolled in the study. Patients will receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation targeted to their liver metastasis. Radiation will be applied by external beam radiotherapy using a 6 MV linear accelerator (Linac) with intensity modulated radiotherapy (IMRT) technique two days prior to surgical resection. All patients admitted to the Department of General-, Visceral-, and Transplantion Surgery, University of Heidelberg for elective hepatic resection are consecutively screened for eligibility into this trial, and written informed consent is obtained before inclusion. The primary objective is to assess the effect of active local external beam radiation dose on, tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include radiogenic treatment toxicity, postoperative morbidity and mortality, local tumor control and recurrence patterns, survival and quality of life. Furthermore, frequencies of systemic tumor reactive T cells in blood and bone marrow will be correlated with clinical outcome.
Discussion
This is a randomized controlled patient blinded trial to assess the safety and efficiency of low dose radiotherapy on metastasis infiltrating T cells and thus potentially enhance the antitumor immune response.
Trial registration
ClinicalTrials.gov: NCT01191632
doi:10.1186/1471-2407-11-419
PMCID: PMC3195202  PMID: 21961577
colorectal liver metastasis; low dose radiation; tumor specific T cells
8.  Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer 
BMC Cancer  2011;11:134.
Background
The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer.
Methods/Design
This trial has been designed as an investigator initiated; prospective randomised, 4-armed, controlled Phase I/II trial. Patients who are candidates for resection of pancreatic cancer will be randomized into 4 arms. A total of 40 patients will be enrolled. The patients receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation precisely targeted to their pancreatic carcinoma. Radiation will be delivered by external beam radiotherapy using a 6 MV Linac with IMRT technique 48 h prior to the surgical resection. The primary objective is the determination of an active local external beam radiation dose, leading to tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include local tumor control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality, as well as quality of life. Further, frequencies of tumor reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. An interim analysis will be performed after the enrolment of 20 patients for safety reasons. The evaluation of the primary endpoint will start four weeks after the last patient's enrolment.
Discussion
This trial will answer the question whether a low dose radiotherapy localized to the pancreatic tumor only can increase the number of tumor infiltrating T cells and thus potentially enhance the antitumor immune response. The study will also investigate the prognostic and predictive value of radiation-induced T cell activity along with transcriptomic and proteomic data with respect to clinical outcome.
Trial registration
ClinicalTrials.gov - NCT01027221
doi:10.1186/1471-2407-11-134
PMCID: PMC3101175  PMID: 21489291
pancreatic cancer; immune therapy; low dose radiation; T-cells
9.  Intensity Modulated Radiotherapy (IMRT) and Fractionated Stereotactic Radiotherapy (FSRT) for children with head-and-neck-rhabdomyosarcoma 
BMC Cancer  2007;7:177.
Background
The present study evaluates the outcome of 19 children with rhabdomyosarcoma of the head-and-neck region treated with Intensity Modulated Radiotherapy (IMRT) or Fractionated Stereotactic Radiotherapy (FSRT) between August 1995 and November 2005.
Methods
We treated 19 children with head-and-neck rhabdomyosarcoma with FSRT (n = 14) or IMRT (n = 5) as a part of multimodal therapy. Median age at the time of radiation therapy was 5 years (range 2–15 years). All children received systemic chemotherapy according to the German Soft Tissue Sarcoma Study protocols.
Median size of treatment volume for RT was 93,4 ml. We applied a median total dose of 45 Gy (range 32 Gy – 54 Gy) using a median fractionation of 5 × 1,8 Gy/week (range 1,6 Gy – 1,8 Gy).
The median time interval between primary diagnosis and radiation therapy was 5 months (range 3–9 months).
Results
After RT, the 3- and 5-year survival rate was 94%. The 3- and 5-year actuarial local control rate after RT was 89%.
The actuarial freedom of distant metastases rate at 3- and 5-years was 89% for all patients.
Radiotherapy was well tolerated in all children and could be completed without interruptions > 4 days. No toxicities >CTC grade 2 were observed. The median follow-up time after RT was 17 months.
Conclusion
IMRT and FSRT lead to excellent outcome in children with head-and-neck RMS with a low incidence of treatment-related side effects.
doi:10.1186/1471-2407-7-177
PMCID: PMC2077337  PMID: 17854490
10.  Tyrosine kinase inhibitor SU6668 represses chondrosarcoma growth via antiangiogenesis in vivo 
BMC Cancer  2007;7:49.
Background
As chondrosarcomas are resistant to chemotherapy and ionizing radiation, therapeutic options are limited. Radical surgery often cannot be performed. Therefore, additional therapies such as antiangiogenesis represent a promising strategy for overcoming limitations in chondrosarcoma therapy. There is strong experimental evidence that SU6668, an inhibitor of the angiogenic tyrosine kinases Flk-1/KDR, PDGFRbeta and FGFR1 can induce growth inhibition of various primary tumors. However, the effectiveness of SU6668 on malignant primary bone tumors such as chondrosarcomas has been rarely investigated. Therefore, the aim of this study was to investigate the effects of SU6668 on chondrosarcoma growth, angiogenesis and microcirculation in vivo.
Methods
In 10 male severe combined immunodeficient (SCID) mice, pieces of SW1353 chondrosarcomas were implanted into a cranial window preparation where the calvaria serves as the site for the orthotopic implantation of bone tumors. From day 7 after tumor implantation, five animals were treated with SU6668 (250 mg/kg body weight, s.c.) at intervals of 48 hours (SU6668), and five animals with the equivalent amount of the CMC-based vehicle (Control). Angiogenesis, microcirculation, and growth of SW 1353 tumors were analyzed by means of intravital microscopy.
Results
SU6668 induced a growth arrest of chondrosarcomas within 7 days after the initiation of the treatment. Compared to Controls, SU6668 decreased functional vessel density and tumor size, respectively, by 37% and 53% on day 28 after tumor implantation. The time course of the experiments demonstrated that the impact on angiogenesis preceded the anti-tumor effect. Histological and immunohistochemical results confirmed the intravital microscopy findings.
Conclusion
SU6668 is a potent inhibitor of chondrosarcoma tumor growth in vivo. This effect appears to be induced by the antiangiogenic effects of SU6668, which are mediated by the inhibition of the key angiogenic receptor tyrosine kinases Flk-1/KDR, PDGFRbeta and FGFR1. The experimental data obtained provide rationale to further develop the strategy of the use of the angiogenesis inhibitor SU6668 in the treatment of chondrosarcomas in addition to established therapies such as surgery.
doi:10.1186/1471-2407-7-49
PMCID: PMC1832206  PMID: 17367541
11.  Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells 
BMC Cancer  2006;6:79.
Background
Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy.
Methods
Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed.
Results
In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and endothelial cell activation.
Conclusion
Radiation-induced autocrine and paracrine PDGF signaling plays an important role in fibroblast and endothelial cell proliferation. SU9518, a PDGFR tyrosine kinase inhibitor, reduces radiation-induced fibroblast and endothelial cell activation. This may explain therapeutic anticancer effects of Imatinib/Gleevec, and at the same time it could open a way of attenuating radiation-induced fibrosis.
doi:10.1186/1471-2407-6-79
PMCID: PMC1458351  PMID: 16556328
12.  The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice 
BMC Cancer  2006;6:9.
Background
The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors.
Methods
In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay.
Results
Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls.
Conclusion
Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases.
doi:10.1186/1471-2407-6-9
PMCID: PMC1360103  PMID: 16409625

Results 1-12 (12)