PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Feasibility of isometric spinal muscle training in patients with bone metastases under radiation therapy - first results of a randomized pilot trial 
BMC Cancer  2014;14:67.
Background
Spinal bone metastases are commonly diagnosed in cancer patients. The consequences are pain both at rest and under exercise, impairment of activities of daily life (ADL), reduced clinical performance, the risk of pathological fractures, and neurological deficits. The aim of this randomized, controlled pilot trial was to investigate the feasibility of muscle-training exercises in patients with spinal bone metastases under radiotherapy. Secondary endpoints were local control, pain response and survival.
Methods
This study was a prospective, randomized, monocentre, controlled explorative intervention trial to determine the multidimensional effects of exercises for strengthening the paravertebral muscles. On the days of radiation treatment, patients in the control group were physically treated in form of respiratory therapy. Sixty patients were randomized between September 2011 and March 2013 into one of the two groups: differentiated resistance training or physical measure with thirty patients in each group.
Results
The resistance training of the paravertebral muscles was feasible in 83.3% of patients (n = 25). Five patients died during the first three months. The exercise group experienced no measurable side effects. “Chair stand test” in the intervention group was significant enhanced with additionally improved analgesic efficiency. Patients in intervention group improved in pain score (VAS, 0–10) over the course (p < .001), and was significant better between groups (p = .003) after 3 months. The overall pain response showed no significant difference between groups (p = .158) There was no significant difference in overall and bone survival (survival from first diagnosed bone metastases to death).
Conclusions
Our trial demonstrated safety and feasibility of an isometric resistance training in patients with spinal bone metastases. The results offer a rationale for future large controlled investigations to confirm these findings.
Trial registration
Clinical trial identifier NCT01409720.
doi:10.1186/1471-2407-14-67
PMCID: PMC3923729  PMID: 24499460
Bone metastases; Spine; Physical exercise; Stability; Isometric training
2.  Phase I study evaluating the treatment of patients with locally advanced pancreatic cancer with carbon ion radiotherapy: the PHOENIX-01 trial 
BMC Cancer  2013;13:419.
Background
Treatment options for patients with locally advanced pancreatic cancer include surgery, chemotherapy as well as radiotherapy. In many cases, surgical resection is not possible, and therefore treatment alternatives have to be performed. Chemoradiation has been established as a convincing treatment alternative for locally advanced pancreatic cancer. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 1.16 and 2.46 depending on the pancreatic cancer cell line as well as the endpoint analyzed. Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with pancreatic cancer.
Methods and design
The present PHOENIX-01 trial evaluates carbon ion radiotherapy using the active rasterscanning technique in patients with advanced pancreatic cancer in combination with weekly gemcitabine and adjuvant gemcitabine. Primary endpoint is toxicity, secondary endpoints are overall survival, progression-free survival and response.
Discussion
The physical and biological properties of the carbon ion beam promise to improve the therapeutic ratio in patients with pancreatic cancer: Due to the inverted dose profile dose deposition in the entry channel of the beam leads to sparing of normal tissue; the Bragg peak can be directed into the defined target volume, and the sharp dose fall-off thereafter again spares normal tissue behind the target volume. The higher RBE of carbon ions, which has been shown also for pancreatic cancer cell lines in the preclinical setting, is likely to contribute to an increase in local control, and perhaps in OS. Early data from Japanese centers have shown promising results. In conclusion, this is the first trial to evaluate actively delivered carbon ion beams in patients with locally advanced pancreatic cancer within a dose-escalation strategy.
Trial registration
NCT01795274
doi:10.1186/1471-2407-13-419
PMCID: PMC3849371  PMID: 24034562
3.  IMRT and carbon ion boost for malignant salivary gland tumors: interim analysis of the COSMIC trial 
BMC Cancer  2012;12:163.
Background
The COSMIC trial is designed to evaluate toxicity in dose-escalated treatment with intensity-modulated radiotherapy (IMRT) and carbon ion boost for malignant salivary gland tumors (MSGT) of the head and neck including patients with inoperable/ incompletely resected MSGTs (R2-group) and completely resected tumors plus involved margins or perineural spread (R1-group).
Methods
COSMIC is a prospective phase II trial of IMRT (25 × 2 Gy) and carbon ion boost (8 × 3 GyE). Primary endpoint is mucositis CTC°III, secondary endpoints are local control, progression-free survival, and toxicity. Evaluation of disease response is carried out according to the Response Evaluation Criteria in Solid Tumors (RECIST); toxicity is assessed using NCI CTC v 3.0.
Results
Twenty-nine patients were recruited from 07/2010 to 04/2011, all patients have at least completed first follow-up. Sixteen patients were treated in the R2-group, 13 in the R1-group. All treatments were completed as planned and well tolerated, mucositis CTC grade III was 25% (R2) and 15.4% (R1), no dysphagia CTC grade III was observed, no feeding tubes were necessary. Side-effects rapidly resolved, only 4 patients (13.8%) reported xerostomia grade II at first follow-up. Overall response rate (complete and partial response) according to RECIST in the R2-group is 68.8% at 6–8 weeks post treatment, all patients within this group showed radiological signs of treatment response.
Conclusion
No unexpected toxicity was observed, mucositis rates and other side effects do not differ between patients with visible residual tumor and macroscopically completely resected tumors. Initial treatment response is promising though longer follow-up is needed to assess local control.
Trial registration
Clinical trial identifier NCT 01154270
doi:10.1186/1471-2407-12-163
PMCID: PMC3407497  PMID: 22551422
4.  Phase I/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer: the PANDORA-01 trial 
BMC Cancer  2012;12:137.
Background
Treatment standard for patients with rectal cancer depends on the initial staging and includes surgical resection, radiotherapy as well as chemotherapy. For stage II and III tumors, radiochemotherapy should be performed in addition to surgery, preferentially as preoperative radiochemotherapy or as short-course hypofractionated radiation. Advances in surgical approaches, especially the establishment of the total mesorectal excision (TME) in combination with sophisticated radiation and chemotherapy have reduced local recurrence rates to only few percent. However, due to the high incidence of rectal cancer, still a high absolute number of patients present with recurrent rectal carcinomas, and effective treatment is therefore needed.
Carbon ions offer physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increase relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the cell line as well as the endpoint analyzed.
Japanese data on the treatment of patients with recurrent rectal cancer previously not treated with radiation therapy have shown local control rates of carbon ion treatment superior to those of surgery. Therefore, this treatment concept should also be evaluated for recurrences after radiotherapy, when dose application using conventional photons is limited. Moreover, these patients are likely to benefit from the enhanced biological efficacy of carbon ions.
Methods and design
In the current Phase I/II-PANDORA-01-Study the recommended dose of carbon ion radiotherapy for recurrent rectal cancer will be determined in the Phase I part, and feasibilty and progression-free survival will be assessed in the Phase II part of the study.
Within the Phase I part, increasing doses from 12 × 3 Gy E to 18 × 3 Gy E will be applied.
The primary endpoint in the Phase I part is toxicity, the primary endpoint in the Phase II part is progression-free survival.
Discussion
With conventional photon irradiation treatment of recurrent rectal cancer is limited, and the clinical effect is only moderate. With carbon ions, an improved outcome can be expected due to the physical and biological characteristics of the carbon ion beam. However, the optimal dose applicable in this clincial situation as re-irradiation still has to be determined. This, as well as efficacy, is to be evaluated in the present Phase I/II trial.
Trial registration
NCT01528683
doi:10.1186/1471-2407-12-137
PMCID: PMC3342902  PMID: 22472035
5.  Monitoring of patients treated with particle therapy using positron-emission-tomography (PET): the MIRANDA study 
BMC Cancer  2012;12:133.
Background
The purpose of this clinical study is to investigate the clinical feasibility and effectiveness of offline Positron-Emission-Tomography (PET) quality assurance for promoting the accuracy of proton and carbon ion beam therapy.
Methods/Design
A total of 240 patients will be recruited, evenly sampled among different analysis groups including tumors of the brain, skull base, head and neck region, upper gastrointestinal tract including the liver, lower gastrointestinal tract, prostate and pelvic region. From the comparison of the measured activity with the planned dose and its corresponding simulated activity distribution, conclusions on the delivered treatment will be inferred and, in case of significant deviations, correction strategies will be elaborated.
Discussion
The investigated patients are expected to benefit from this study, since in case of detected deviations between planned and actual treatment delivery a proper intervention (e.g., correction) could be performed in a subsequent irradiation fraction. In this way, an overall better treatment could be achieved than without any in-vivo verification. Moreover, site-specific patient-population information on the precision of the ion range at HIT might enable improvement of the CT-range calibration curve as well as safe reduction of the treatment margins to promote enhanced treatment plan conformality and dose escalation for full clinical exploitation of the promises of ion beam therapy.
Trial Registration
NCT01528670
doi:10.1186/1471-2407-12-133
PMCID: PMC3350391  PMID: 22471947
6.  Isometric muscle training of the spine musculature in patients with spinal bony metastases under radiation therapy 
BMC Cancer  2011;11:482.
Background
Osseous metastatic involvement of the spinal column affects many patients with a primary tumour disease of all entities. The consequences are pain both at rest and under exertion, impairments in going about day-to-day activities, diminished performance, the risk of pathological fractures, and neurological deficits. Palliative percutaneous radiotherapy is one of the therapeutical options available in this connection. The aim of this explorative study is to investigate the feasibility of muscle-training exercises and to evaluate the progression- and fracture-free survival time and the improvement of bone density, as well as to assess other clinical parameters such as pain, quality of life, and fatigue as secondary endpoints.
Methods/Design
This study is a prospective, randomized, monocentre, controlled explorative intervention study in the parallel-group design to determine the multidimensional effects of a course of exercises at first under physiotherapeutic instruction and subsequently performed by the patients independently for strengthening the paravertebral muscles of patients with metastases of the vertebral column parallel to their percutaneous radiotherapy. On the days of radiation treatment the patients in the control group shall be given physical treatment in the form of respiratory therapy and the so-called "hot roll". The patients will be randomized into one of the two groups: differentiated muscle training or physiotherapy with thirty patients in each group.
Discussion
The aim of the study is to evaluate the feasibility of the training programme described here. Progression-free and fracture-free survival, improved response to radiotherapy by means of bone density, and clinical parameters such as pain, quality of life, and fatigue constitute secondary study objectives.
Trial Registration
ClinicalTrials.gov: NCT01409720
doi:10.1186/1471-2407-11-482
PMCID: PMC3229663  PMID: 22070722
7.  A randomized controlled trial to investigate the influence of low dose radiotherapy on immune stimulatory effects in liver metastases of colorectal cancer 
BMC Cancer  2011;11:419.
Background
Insufficient migration and activation of tumor specific effector T cells in the tumor is one of the main reasons for inadequate host anti-tumor immune response. External radiation seems to induce inflammation and activate the immune response. This phase I/II clinical trial aims to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with colorectal liver metastases.
Methods/Design
This is an investigator-initiated, prospective randomised, 4-armed, controlled Phase I/II trial. Patients undergoing elective hepatic resection due to colorectal cancer liver metastasis will be enrolled in the study. Patients will receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation targeted to their liver metastasis. Radiation will be applied by external beam radiotherapy using a 6 MV linear accelerator (Linac) with intensity modulated radiotherapy (IMRT) technique two days prior to surgical resection. All patients admitted to the Department of General-, Visceral-, and Transplantion Surgery, University of Heidelberg for elective hepatic resection are consecutively screened for eligibility into this trial, and written informed consent is obtained before inclusion. The primary objective is to assess the effect of active local external beam radiation dose on, tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include radiogenic treatment toxicity, postoperative morbidity and mortality, local tumor control and recurrence patterns, survival and quality of life. Furthermore, frequencies of systemic tumor reactive T cells in blood and bone marrow will be correlated with clinical outcome.
Discussion
This is a randomized controlled patient blinded trial to assess the safety and efficiency of low dose radiotherapy on metastasis infiltrating T cells and thus potentially enhance the antitumor immune response.
Trial registration
ClinicalTrials.gov: NCT01191632
doi:10.1186/1471-2407-11-419
PMCID: PMC3195202  PMID: 21961577
colorectal liver metastasis; low dose radiation; tumor specific T cells
8.  Sequential FDG-PET and induction chemotherapy in locally advanced adenocarcinoma of the Oesophago-gastric junction (AEG): The Heidelberg Imaging program in Cancer of the oesophago-gastric junction during Neoadjuvant treatment: HICON trial 
BMC Cancer  2011;11:266.
Background
18-Fluorodeoxyglucose-PET (18F-FDG-PET) can be used for early response assessment in patients with locally advanced adenocarcinomas of the oesophagogastric junction (AEG) undergoing neoadjuvant chemotherapy. It has been recently shown in the MUNICON trials that response-guided treatment algorithms based on early changes of the FDG tumor uptake detected by PET are feasible and that they can be implemented into clinical practice.
Only 40%-50% of the patients respond metabolically to therapy. As metabolic non-response is known to be associated with a dismal prognosis, metabolic non-responders are increasingly treated with alternative neoadjuvant chemotherapies or chemoradiation in order to improve their clinical outcome. We plan to investigate whether PET can be used as response assessment during radiochemotherapy given as salvage treatment in early metabolic non-responders to standard chemotherapy.
Methods/Design
The HICON trial is a prospective, non-randomized, explorative imaging study evaluating the value of PET as a predictor of histopathological response in metabolic non-responders. Patients with resectable AEG type I and II according to Siewerts classification, staged cT3/4 and/or cN+ and cM0 by endoscopic ultrasound, spiral CT or MRI and FDG-PET are eligible. Tumors must be potentially R0 resectable and must have a sufficient FDG-baseline uptake. Only metabolic non-responders, showing a < 35% decrease of SUV two weeks after the start of neoadjuvant chemotherapy are eligible for the study and are taken to intensified taxane-based RCT (chemoradiotherapy (45 Gy) before surgery. 18FDG-PET scans will be performed before ( = Baseline) and after 14 days of standard neoadjuvant therapy as well as after the first cycle of salvage docetaxel/cisplatin chemotherapy (PET 1) and at the end of radiochemotherapy (PET2). Tracer uptake will be assessed semiquantitatively using standardized uptake values (SUV). The percentage difference ΔSUV = 100 (SUVBaseline - SUV PET1)/SUVBaseline will be calculated and assessed as an early predictor of histopathological response. In a secondary analysis, the association between the difference SUVPET1 - SUVPET2 and histopathological response will be evaluated.
Discussion
The aim of this study is to investigate the potential of sequential 18FDG-PET in predicting histopathological response in AEG tumors to salvage neoadjuvant radiochemotherapy in patients who do not show metabolic response to standard neoadjuvant chemotherapy.
Trial Registration
Clinical trial identifier NCT01271322
doi:10.1186/1471-2407-11-266
PMCID: PMC3149600  PMID: 21702914
9.  Simultaneous integrated boost for adjuvant treatment of breast cancer- intensity modulated vs. conventional radiotherapy: The IMRT-MC2 trial 
BMC Cancer  2011;11:249.
Background
Radiation therapy is an essential modality in the treatment of breast cancer. Addition of radiotherapy to surgery has significantly increased local control and survival rates of the disease. However, radiotherapy is also associated with side effects, such as tissue fibrosis or enhanced vascular morbidity. Modern radiotherapy strategies, such as intensity modulated radiotherapy (IMRT), can shorten the overall treatment time by integration of the additional tumor bed boost significantly. To what extent this might be possible without impairing treatment outcome and cosmetic results remains to be clarified.
Methods/Design
The IMRT-MC2 study is a prospective, two armed, multicenter, randomized phase-III-trial comparing intensity modulated radiotherapy with integrated boost to conventional radiotherapy with consecutive boost in patients with breast cancer after breast conserving surgery. 502 patients will be recruited and randomized into two arms: patients in arm A will receive IMRT in 28 fractions delivering 50.4 Gy to the breast and 64.4 Gy to the tumor bed by integrated boost, while patients in arm B will receive conventional radiotherapy of the breast in 28 fractions to a dose of 50.4 Gy and consecutive boost in 8 fractions to a total dose of 66.4 Gy.
Discussion
Primary objectives of the study are the evaluation of the cosmetic results 6 weeks and 2 years post treatment and the 2- and 5-year local recurrence rates for the two different radiotherapy strategies. Secondary objectives are long term overall survival, disease free survival and quality of life.
Trial Registration
ClinicalTrials.gov Protocol ID: NCT01322854.
doi:10.1186/1471-2407-11-249
PMCID: PMC3150341  PMID: 21676232
10.  Treatment of malignant sinonasal tumours with intensity-modulated radiotherapy (IMRT) and carbon ion boost (C12) 
BMC Cancer  2011;11:190.
Background
Most patients with cancers of the nasal cavity or paranasal sinuses are candidates of radiation therapy either due incomplete resection or technical inoperability. Local control in this disease is dose dependent but technically challenging due to close proximity of critical organs and accompanying toxicity. Modern techniques such as IMRT improve toxicity rates while local control remains unchanged. Raster-scanned carbon ion therapy with highly conformal dose distributions may allow higher doses at comparable or reduced side-effects.
Methods/design
The IMRT-HIT-SNT trial is a prospective, mono-centric, phase II trial evaluating toxicity (primary endpoint: mucositis ≥ CTCAE°III) and efficacy (secondary endpoint: local control, disease-free and overall survival) in the combined treatment with IMRT and carbon ion boost in 30 patients with histologically proven (≥R1-resected or inoperable) adeno-/or squamous cell carcinoma of the nasal cavity or paransal sinuses. Patients receive 24 GyE carbon ions (8 fractions) and IMRT (50 Gy at 2.0 Gy/fraction).
Discussion
The primary objective of IMRT-HIT-SNT is to evaluate toxicity and feasibility of the proposed treatment in sinonasal malignancies.
Trial Registration
Clinical trial identifier NCT 01220752
doi:10.1186/1471-2407-11-190
PMCID: PMC3112165  PMID: 21600049
11.  Phase II study of induction chemotherapy with TPF followed by radioimmunotherapy with Cetuximab and intensity-modulated radiotherapy (IMRT) in combination with a carbon ion boost for locally advanced tumours of the oro-, hypopharynx and larynx - TPF-C-HIT 
BMC Cancer  2011;11:182.
Background
Long-term locoregional control in locally advanced squamous cell carcinoma of the head and neck (SCCHN) remains challenging. While recent years have seen various approaches to improve outcome by intensification of treatment schedules through introduction of novel induction and combination chemotherapy regimen and altered fractionation regimen, patient tolerance to higher treatment intensities is limited by accompanying side-effects. Combined radioimmunotherapy with cetuximab as well as modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT) and carbon ion therapy (C12) are able to limit toxicity while maintaining treatment effects. In order to achieve maximum efficacy with yet acceptable toxicity, this sequential phase II trial combines induction chemotherapy with docetaxel, cisplatin, and 5-FU (TPF) followed by radioimmunotherapy with cetuximab as IMRT plus carbon ion boost. We expect this approach to result in increased cure rates with yet manageable accompanying toxicity.
Methods/design
The TPF-C-HIT trial is a prospective, mono-centric, open-label, non-randomized phase II trial evaluating efficacy and toxicity of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 50 patients with histologically proven locally advanced SCCHN following TPF induction chemotherapy. Patients receive 24 GyE carbon ions (8 fractions) and 50 Gy IMRT (2.0 Gy/fraction) in combination with weekly cetuximab throughout radiotherapy. Primary endpoint is locoregional control at 12 months, secondary endpoints are disease-free survival, progression-free survival, overall survival, acute and late radiation effects as well as any adverse events of the treatment as well as quality of life (QoL) analyses.
Discussion
The primary objective of TPF-C-HIT is to evaluate efficacy and toxicity of cetuximab in combination with combined IMRT/carbon ion therapy following TPF induction in locally advanced SCCHN.
Trial Registration
Clinical Trial Identifier: NCT01245985 (clinicaltrials.gov)
EudraCT number: 2009 - 016489- 10
doi:10.1186/1471-2407-11-182
PMCID: PMC3118195  PMID: 21595970
12.  Combined treatment of adenoid cystic carcinoma with cetuximab and IMRT plus C12 heavy ion boost: ACCEPT [ACC, Erbitux® and particle therapy] 
BMC Cancer  2011;11:70.
Background
Local control in adjuvant/definitive RT of adenoid cystic carcinoma (ACC) is largely dose-dependent leading to the establishment of particle therapy in this indication. However, even modern techniques leave space for improvement of local control by intensification of local treatment. Radiation sensitization by exploitation of high EGFR-expression in ACC with the EGFR receptor antibody cetuximab seems promising.
Methods/design
The ACCEPT trial is a prospective, mono-centric, phase I/II trial evaluating toxicity (primary endpoint: acute and late effects) and efficacy (secondary endpoint: local control, distant control, disease-free survival, overall survival) of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 49 patients with histologically proven (≥R1-resected, inoperable or Pn+) ACC. Patients receive 18 GyE carbon ions (6 fractions) and 54 Gy IMRT (2.0 Gy/fraction) in combination with weekly cetuximab throughout radiotherapy.
Discussion
The primary objective of ACCEPT is to evaluate toxicity and feasibility of cetuximab and particle therapy in adenoid cystic carcinoma.
Trial Registration
Clinical Trial Identifier: NCT 01192087
EudraCT number: 2010 - 022425 - 15
doi:10.1186/1471-2407-11-70
PMCID: PMC3042975  PMID: 21320355
13.  Phase i study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: The PROMETHEUS-01 trial 
BMC Cancer  2011;11:67.
Background
Treatment options for patients with advanced hepatocellular carcinoma (HCC) are often limited. In most cases, they are not amenable to local therapies including surgery or radiofrequency ablation. The multi-kinase inhibitor sorafenib has shown to increase overall survival in this patient group for about 3 months.
Radiation therapy is a treatment alternative, however, high local doses are required for long-term local control. However, due to the relatively low radiation tolerance of liver normal tissue, even using stereotactic techniques, delivery of sufficient doses for successful local tumor control has not be achieved to date.
Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 3 depending on the HCC cell line as well as the endpoint analyzed.
Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with HCC.
Methods/Design
In the current Phase I-PROMETHEUS-01-Study, carbon ion radiotherapy will be evaluated for patients with advanced HCC. The study will be performed as a dose-escalation study evaluating the optimal carbon ion dose with respect to toxicity and tumor control.
Primary endpoint is toxicity, secondary endpoint is progression-free survival and response.
Discussion
The Prometheus-01 trial ist the first trial evaluating carbon ion radiotherapy delivered by intensity-modulated rasterscanning for the treatment of HCC. Within this Phase I dose escalation study, the optimal dose of carbon ion radiotherapy will be determined.
Trial registration
NCT 01167374
doi:10.1186/1471-2407-11-67
PMCID: PMC3045987  PMID: 21314962
14.  Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT) in combination with cetuximab and chemotherapy: the REACH protocol 
BMC Cancer  2010;10:651.
Background
Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival), combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux®). Radiation therapy (RT) is carried out as intensity-modulated RT (IMRT) to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues.
Methods/Design
The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU) and the monoclonal epidermal growth factor-receptor (EGFR) antibody cetuximab (Erbitux®) as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx.
Patients receive weekly chemotherapy infusions in the 1st and 5th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16) to a total dose of 69,9 Gy.
Discussion
Primary endpoint of the trial is local-regional control (LRC). Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer.
Trial registration
ISRCTN87356938
doi:10.1186/1471-2407-10-651
PMCID: PMC3001721  PMID: 21108850
15.  Treatment of patients with atypical meningiomas Simpson grade 4 and 5 with a carbon ion boost in combination with postoperative photon radiotherapy: The MARCIE Trial 
BMC Cancer  2010;10:615.
Background
Treatment standard for patients with atypical or anaplastic meningioma is neurosurgical resection. With this approach, local control ranges between 50% and 70%, depending on resection status. A series or smaller studies has shown that postoperative radiotherapy in this patient population can increase progression-free survival, which translates into increased overall survival. However, meningiomas are known to be radioresistant tumors, and radiation doses of 60 Gy or higher have been shown to be necessary for tumor control.
Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the cell line as well as the endpoint analyzed.
First data obtained within the Phase I/II trial performed at GSI in Darmstadt on carbon ion radiotherapy for patients with high-risk meningiomas has shown safety, and treatment results are promising.
Methods/design
The Phase II-MARCIE-Study will evaluate a carbon ion boost applied to the macroscopic tumor in conjunction with photon radiotherapy in patients with atypical menigiomas after incomplete resection or biopsy.
Primary endpoint is progression-free survival, secondary endpoints are overall survival, safety and toxicity.
Discussion
Based on published data on the treatment of atypical meningiomas with carbon ions at GSI, the present study will evaluate this treatment concept in a larger patient population and will compare outcome to current standard photon treatment.
Trial registration
NCT01166321
doi:10.1186/1471-2407-10-615
PMCID: PMC2996393  PMID: 21062428
16.  Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study HIT-1-Study 
BMC Cancer  2010;10:607.
Background
Chordomas of the skull base are relative rare lesions of the bones. Surgical resection is the primary treatment standard, though complete resection is nearly impossible due to close proximity to critical and hence also dose limiting organs for radiation therapy. Level of recurrence after surgery alone is comparatively high, so adjuvant radiation therapy is very important for the improvement of local control rates. Proton therapy is the gold standard in the treatment of skull base chordomas. However, high-LET beams such as carbon ions theoretically offer biologic advantages by enhanced biologic effectiveness in slow-growing tumors.
Methods/design
This clinical study is a prospective randomised phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie centre (HIT) and is a monocentric study.
Patients with skull base chordoma will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume delineation will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV in carbon ion treatment (accelerated dose) will be 63 Gy E ± 5% and 72 Gy E ± 5% (standard dose) in proton therapy respectively. Local-progression free survival (LPFS) will be analysed as primary end point. Toxicity and overall survival are the secondary end points. Additional examined parameters are patterns of recurrence, prognostic factors and plan quality analysis.
Discussion
Up until now it was impossible to compare two different particle therapies, i.e. protons and carbon ions directly at the same facility.
The aim of this study is to find out, whether the biological advantages of carbon ion therapy can also be clinically confirmed and translated into the better local control rates in the treatment of skull base chordomas.
Trial registration
ClinicalTrials.gov identifier: NCT01182779
doi:10.1186/1471-2407-10-607
PMCID: PMC2988755  PMID: 21054824
17.  Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study 
BMC Cancer  2010;10:606.
Background
Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer) beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours.
Methods/Design
The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT) centre as monocentric trial.
Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume) in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose) in proton therapy respectively. The 5 year local-progression free survival (LPFS) rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points.
Discussion
Up to now it was impossible to compare two different particle therapies, i.e. protons and carbon ions, directly at the same facility in connection with the treatment of low grade skull base chondrosarcomas.
This trial is a phase III study to demonstrate that carbon ion radiotherapy (experimental treatment) is not relevantly inferior and at least as good as proton radiotherapy (standard treatment) with respect to 5 year LPFS in the treatment of chondrosarcomas. Additionally, we expect less toxicity in the carbon ion treatment arm.
Trial Registration
ClinicalTrials.gov identifier: NCT01182753
doi:10.1186/1471-2407-10-606
PMCID: PMC2991309  PMID: 21050498
18.  Combined treatment of malignant salivary gland tumours with intensity-modulated radiation therapy (IMRT) and carbon ions: COSMIC 
BMC Cancer  2010;10:546.
Background
Local control in malignant salivary gland tumours is dose dependent. High local control rates in adenoid cystic carcinomas could be achieved by highly conformal radiotherapy techniques and particle (neutron/carbon ion) therapy. Considering high doses are needed to achieve local control, all malignant salivary gland tumours probably profit from the use of particle therapy, which in case of carbon ion treatment, has been shown to be accompanied by only mild side-effects.
Methods/design
The COSMIC trial is a prospective, mono-centric, phase II trial evaluating toxicity (primary endpoint: mucositis ≥ CTCAE°3) and efficacy (secondary endpoint: local control, disease-free survival) in the combined treatment with IMRT and carbon ion boost in 54 patients with histologically proved (≥R1-resected, inoperable or Pn+) salivary gland malignancies. Patients receive 24 GyE carbon ions (8 fractions) and IMRT (50 Gy at 2.0 Gy/fraction).
Discussion
The primary objective of COSMIC is to evaluate toxicity and feasibility of the proposed treatment in all salivary gland malignancies.
Trial Registration
Clinical trial identifier NCT 01154270
doi:10.1186/1471-2407-10-546
PMCID: PMC2958954  PMID: 20937120
19.  Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial 
BMC Cancer  2010;10:533.
Background
Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT), a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas.
Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons.
First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective.
Methods Design
In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD) of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy.
Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival.
Discussion
The Cinderella trial is the first study to evaluate carbon ion radiotherapy for recurrent gliomas, and to compare this treatment to photon FSRT in a randomized setting using an ion beam delivered by intensity modulated rasterscanning.
Trial Registration
NCT01166308
doi:10.1186/1471-2407-10-533
PMCID: PMC2958944  PMID: 20925951
20.  Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: The CLEOPATRA Trial 
BMC Cancer  2010;10:478.
Background
Treatment standard for patients with primary glioblastoma (GBM) is combined radiochemotherapy with temozolomide (TMZ). Radiation is delivered up to a total dose of 60 Gy using photons. Using this treatment regimen, overall survival could be extended significantly however, median overall survival is still only about 15 months.
Carbon ions offer physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increase relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons.
First Japanese Data on the evaluation of carbon ion radiation therapy showed promising results in a small and heterogeneous patient collective.
Methods/Design
In the current Phase II-CLEOPATRA-Study a carbon ion boost will be compared to a proton boost applied to the macroscopic tumor after surgery at primary diagnosis in patients with GBM applied after standard radiochemotherapy with TMZ up to 50 Gy. In the experimental arm, a carbon ion boost will be applied to the macroscopic tumor up to a total dose of 18 Gy E in 6 fractions at a single dose of 3 Gy E. In the standard arm, a proton boost will be applied up to a total dose 10 Gy E in 5 single fractions of 2 Gy E.
Primary endpoint is overall survival, secondary objectives are progression-free survival, toxicity and safety.
Discussion
The Cleopatra Trial is the first study to evaluate the effect of carbon ion radiotherapy within multimodality treatment of primary glioblastoma in a randomized trial comparing this innovative treatment of the treatment standard, consisitng of photon radiotherapy in combination with temozolomide.
Trial Registration
ISRCTN37428883 and NCT01165671
doi:10.1186/1471-2407-10-478
PMCID: PMC2944178  PMID: 20819220
21.  Outcome and prognostic factors of desmoplastic medulloblastoma treated within a multidisciplinary treatment concept 
BMC Cancer  2010;10:450.
Background
Desmoplasia in medulloblastoma is often diagnosed in adult patients and was repeatedly associated with improved results. Today, all medulloblastoma patients receive intensive multimodal treatment including surgery, radiotherapy and chemotherapy. This study was set up to investigate treatment outcome and prognostic factors after radiation therapy in patients with desmoplastic medulloblastomas.
Methods
Twenty patients treated for desmoplastic medulloblastoma in the Department of Radiation Oncology at the University of Heidelberg between 1984 and 2007 were included. Data were collected retrospectively. Tumor resection was performed in all patients. All patients underwent postsurgical radiotherapy (RT). Two patients underwent whole brain radiotherapy (WBRT), and 18 patients received craniospinal irradiation (CSI). In all patients, an additional boost was delivered to the posterior fossa. The median dose to the whole brain and the craniospinal axis was 35.2 Gray (Gy), and 54.4 Gy to the posterior fossa. Fourteen patients received chemotherapy, including seven who were treated with combined radiochemotherapy and twelve who received adjuvant chemotherapy. Statistical analysis was performed using the log-rank test and the Kaplan-Meier method.
Results
Median follow-up was 59 months. Overall (OS), local (LPFS) and distant progression-free survival (DPFS) was 80%, 71.2%, and 83.3% at 60 months. Patients who suffered from local or distant relapses had significantly worse outcome. Five patients died from recurrent medulloblastoma. Treatment-associated toxicity was acceptable.
Conclusions
Multimodal approaches with surgical resection followed by chemoirradiation achieved high response rates with long OS in desmoplastic medulloblastoma patients. Staging parameters expected to predict for poor prognosis did not significantly influence outcome. However, success of any first line regimen had strong impact on disease control, and remission was achieved in no patient with relapsing disease. Multimodal concepts must be evaluated in further clinical trials.
doi:10.1186/1471-2407-10-450
PMCID: PMC2939548  PMID: 20731859
22.  Long-term survival of cancer patients compared to heart failure and stroke: A systematic review 
BMC Cancer  2010;10:105.
Background
Cancer, heart failure and stroke are among the most common causes of death worldwide. Investigation of the prognostic impact of each disease is important, especially for a better understanding of competing risks. Aim of this study is to provide an overview of long term survival of cancer, heart failure and stroke patients based on the results of large population- and hospital-based studies.
Methods
Records for our study were identified by searches of Medline via Pubmed. We focused on observed and relative age- and sex-adjusted 5-year survival rates for cancer in general and for the four most common malignancies in developed countries, i.e. lung, breast, prostate and colorectal cancer, as well as for heart failure and stroke.
Results
Twenty studies were identified and included for analysis. Five-year observed survival was about 43% for all cancer entities, 40-68% for stroke and 26-52% for heart failure. Five-year age and sex adjusted relative survival was 50-57% for all cancer entities, about 50% for stroke and about 62% for heart failure. In regard to the four most common malignancies in developed countries 5-year relative survival was 12-18% for lung cancer, 73-89% for breast cancer, 50-99% for prostate cancer and about 43-63% for colorectal cancer. Trend analysis revealed a survival improvement over the last decades.
Conclusions
The results indicate that long term survival and prognosis of cancer is not necessarily worse than that of heart failure and stroke. However, a comparison of the prognostic impact of the different diseases is limited, corroborating the necessity for further systematic investigation of competing risks.
doi:10.1186/1471-2407-10-105
PMCID: PMC2851688  PMID: 20307299
23.  Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma 
BMC Cancer  2010;10:96.
Background
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. For effective treatment, local control of the tumor is absolutely critical, because the chances of long term survival are <10% and might effectively approach zero if a complete surgical resection of the tumor is not possible. Up to date there is no curative treatment protocol for patients with non-resectable osteosarcomas, who are excluded from current osteosarcoma trials, e.g. EURAMOS1. Local photon radiotherapy has previously been used in small series and in an uncontrolled, highly individualized fashion, which, however, documented that high dose radiotherapy can, in principle, be used to achieve local control. Generally the radiation dose that is necessary for a curative approach can hardly be achieved with conventional photon radiotherapy in patients with non-resectable tumors that are usually located near radiosensitive critical organs such as the brain, the spine or the pelvis. In these cases particle Radiotherapy (proton therapy (PT)/heavy ion therapy (HIT) may offer a promising new alternative. Moreover, compared with photons, heavy ion beams provide a higher physical selectivity because of their finite depth coverage in tissue. They achieve a higher relative biological effectiveness. Phase I/II dose escalation studies of HIT in adults with non-resectable bone and soft tissue sarcomas have already shown favorable results.
Methods/Design
This is a monocenter, single-arm study for patients ≥ 6 years of age with non-resectable osteosarcoma. Desired target dose is 60-66 Cobalt Gray Equivalent (Gy E) with 45 Gy PT (proton therapy) and a carbon ion boost of 15-21 GyE. Weekly fractionation of 5-6 × 3 Gy E is used. PT/HIT will be administered exclusively at the Ion Radiotherapy Center in Heidelberg. Furthermore, FDG-PET imaging characteristics of non-resectable osteosarcoma before and after PT/HIT will be investigated prospectively. Systemic disease before and after PT/HIT is targeted by standard chemotherapy protocols and is not part of this trial.
Discussion
The primary objectives of this trial are the determination of feasibility and toxicity of HIT. Secondary objectives are tumor response, disease free survival and overall survival. The aim is to improve outcome for patients with non-resectable osteosarcoma.
Trail Registration
Registration number (ClinicalTrials.gov): NCT01005043
doi:10.1186/1471-2407-10-96
PMCID: PMC2846886  PMID: 20226028
24.  Intensity Modulated Radiotherapy (IMRT) and Fractionated Stereotactic Radiotherapy (FSRT) for children with head-and-neck-rhabdomyosarcoma 
BMC Cancer  2007;7:177.
Background
The present study evaluates the outcome of 19 children with rhabdomyosarcoma of the head-and-neck region treated with Intensity Modulated Radiotherapy (IMRT) or Fractionated Stereotactic Radiotherapy (FSRT) between August 1995 and November 2005.
Methods
We treated 19 children with head-and-neck rhabdomyosarcoma with FSRT (n = 14) or IMRT (n = 5) as a part of multimodal therapy. Median age at the time of radiation therapy was 5 years (range 2–15 years). All children received systemic chemotherapy according to the German Soft Tissue Sarcoma Study protocols.
Median size of treatment volume for RT was 93,4 ml. We applied a median total dose of 45 Gy (range 32 Gy – 54 Gy) using a median fractionation of 5 × 1,8 Gy/week (range 1,6 Gy – 1,8 Gy).
The median time interval between primary diagnosis and radiation therapy was 5 months (range 3–9 months).
Results
After RT, the 3- and 5-year survival rate was 94%. The 3- and 5-year actuarial local control rate after RT was 89%.
The actuarial freedom of distant metastases rate at 3- and 5-years was 89% for all patients.
Radiotherapy was well tolerated in all children and could be completed without interruptions > 4 days. No toxicities >CTC grade 2 were observed. The median follow-up time after RT was 17 months.
Conclusion
IMRT and FSRT lead to excellent outcome in children with head-and-neck RMS with a low incidence of treatment-related side effects.
doi:10.1186/1471-2407-7-177
PMCID: PMC2077337  PMID: 17854490
25.  Radiotherapeutic alternatives for previously irradiated recurrent gliomas 
BMC Cancer  2007;7:167.
Re-irradiation for recurrent gliomas has been discussed controversially in the past. This was mainly due to only marginal palliation while being associated with a high risk for side effects using conventional radiotherapy.
With modern high-precision radiotherapy re-irradiation has become a more wide-spread, effective and well-tolerated treatment option. Besides external beam radiotherapy, a number of invasive and/or intraoperative radiation techniques have been evaluated in patients with recurrent gliomas.
The present article is a review on the available methods in radiation oncology and summarizes results with respect to outcome and side effects in comparison to clinical results after neurosurgical resection or different chemotherapeutic approaches.
doi:10.1186/1471-2407-7-167
PMCID: PMC2212655  PMID: 17760992

Results 1-25 (27)